Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Mushrooms ; 24(4): 31-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695594

RESUMO

The main objective of this work was to evaluate whether Pleurotus albidus extract exerts influences on aorta artery tone by its antioxidant properties. The hearts and aortic arteries of male Wistar rats were removed for use in biochemical analysis and vascular reactivity. Both tissues were exposed to P. albidus extract at different concentrations for 30 min and were then exposed to a free radical generation system for 30 min. The extract reduced lipid peroxidation levels and increased catalase and glutathione peroxidase activity in cardiac tissue. In the aorta, P. albidus extract demonstrated a direct vasodilatory effect, which was associated with a reduction in nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and an increase in sulfhydryl levels and nitric oxide synthase (NOS) activity. Our findings suggest that P. albidus extract has regulatory potential on aorta arteries, regulating the balance of NOX/NOS enzymes and then influencing vessel tone. Further studies are needed to determine the protective mechanisms of the extract.


Assuntos
Antioxidantes , Vasodilatação , Animais , Antioxidantes/farmacologia , Aorta , Masculino , NADP/farmacologia , Óxido Nítrico , Óxido Nítrico Sintase/metabolismo , Pleurotus , Ratos , Ratos Wistar
2.
Mol Cell Biochem ; 477(3): 663-672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988854

RESUMO

Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 µg/ml of BBE for 4 h and maintained in the presence of 100 µM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.


Assuntos
Apoptose/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Mioblastos Cardíacos/metabolismo , Norepinefrina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Extratos Vegetais/química , Ratos
3.
Eur J Nutr ; 61(1): 373-386, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34374852

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH's pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH's animal model. METHODS: Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses. RESULTS: RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity. CONCLUSION: Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.


Assuntos
Mirtilos Azuis (Planta) , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Modelos Animais de Doenças , Ventrículos do Coração , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Oxirredução , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
4.
Arq. bras. cardiol ; 117(6): 1106-1112, dez. 2021. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1350055

RESUMO

Resumo Fundamento Até o presente momento, os efeitos sistêmicos do óleo de copaíba jamais foram documentados no Cor pulmonale induzido por monocrotalina. Objetivos Investigar os efeitos do óleo de copaíba nos marcadores periféricos de stress oxidativo em ratos com Cor pulmonale. Métodos Ratos Wistar machos (170±20g, n=7/grupo) foram divididos em quatro grupos: controle (CO), monocrotalina (MCT), óleo de copaíba (O), e monocrotalina + óleo de copaíba (MCT-O). Foi administrada a MCT (60 mg/kg i.p.) e, depois de uma semana, foi iniciado o tratamento com óleo de copaíba (400 mg/kg/day-gavagem-14 dias). Foi realizado o ecocardiograma e, depois disso, foi coletado sangue do tronco para a realização de avaliações de stress oxidativo. Análise estatística: ANOVA de duas vias com teste Student-Newman-Keuls post hoc. P-valores <0,05 foram considerados significativos. Resultados O óleo de copaíba reduziu a resistência vascular pulmonar e a hipertrofia do ventrículo direito (VD) hipertrofia (Índice de Fulton (mg/mg)): MCT-O= 0,39±0,03; MCT= 0,49±0,01), e função sistólica melhorada (fração de encurtamento do VD, %) no grupo MCT-O (17,8±8,2) em comparação com o grupo de MCT (9,4±3,1; p<0,05). Além disso, no grupo MCT-O, espécies reativas do oxigênio e os níveis de carbonila foram reduzidos, e os parâmetros antioxidantes aumentaram no sangue periférico (p <0,05). Conclusões Os resultados deste estudo sugerem que o óleo de copaíba tem um efeito antioxidante sistêmico interessante, que se reflete na melhoria da função e na morfometria do VD nesse modelo de Cor pulmonale . A atenuação do Cor pulmonale promovida pelo óleo de copaíba coincidiu com uma redução no stress oxidativo sistêmico.


Abstract Background To date, copaiba oil's systemic effects have never documented in Cor pulmonale induced by monocrotaline. Objectives To investigate copaiba oil's effects in peripheral markers of oxidative stress in rats with Cor pulmonale. Methods Male Wistar rats (170±20g, n=7/group) were divided into four groups: control (CO), monocrotaline (MCT), copaiba oil (O), and monocrotaline+copaiba oil (MCT-O). MCT (60 mg/kg i.p.) was administered, and after one week, treatment with copaiba oil (400 mg/kg/day-gavage-14 days) was begun. Echocardiography was performed and, later, trunk blood collection was performed for oxidative stress evaluations. Statistical analysis: two-way ANOVA with Student-Newman-Keuls post-hoc test. P values<0.05 were considered significant. Results Copaiba oil reduced pulmonary vascular resistance and right ventricle (RV) hypertrophy (Fulton index (mg/mg): MCT-O=0.39±0.03; MCT=0.49±0.01), and improved RV systolic function (RV shortening fraction, %) in the MCT-O group (17.8±8.2) as compared to the MCT group (9.4±3.1; p<0.05). Moreover, in the MCT-O group, reactive oxygen species and carbonyl levels were reduced, and antioxidant parameters were increased in the peripheral blood (p<0.05). Conclusions: Our results suggest that copaiba oil has an interesting systemic antioxidant effect, which is reflected in the improvements in function and RV morphometry in this Cor pulmonale model. Cor pulmonale attenuation promoted by copaiba oil coincided with a reduction in systemic oxidative stress.

5.
Nutrition ; 70: 110579, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743815

RESUMO

OBJECTIVES: Pulmonary arterial hypertension (PAH) is a condition characterized by an increased resistance of pulmonary vasculature, culminating in an increase in pulmonary pressure. This process involves disturbances in lung redox homeostasis, causing progressive right heart failure. In this context, the use of natural antioxidants, such as those found in blueberries, may represent a therapeutic approach. The aim of this study was to evaluate the effect of blueberry extract (BB) on functional parameters and oxidative stress levels in rat lungs with induced PAH. METHODS: Forty-eight male Wistar rats (weighing 200 ± 20 g) were randomized into five groups: control, monocrotaline, monocrotaline + BB 50, monocrotaline + BB 100, and monocrotaline + BB 200. PAH was induced by the administration of monocrotaline (60 mg/kg, intraperitoneal). Rats were treated with BB at doses of 50, 100, and 200 mg/kg via gavage for 5 wk (2 wk before monocrotaline and 3 wk after monocrotaline injection). At day 35, rats were submitted to echocardiography and catheterization. They were then sacrificed and lungs were harvested for biochemical analyses. RESULTS: BB increased the E/A ratio of blood flow across the tricuspid valve and tricuspid annular phase systolic excursion, as wells as decreased the mean pulmonary artery pressure of animals compared with the PAH group. Moreover, BB decreased total reactive species concentration and lipid oxidation, reduced activity of nicotinamide adenine dinucleotide phosphate oxidase and expression of xanthine oxidase, increased the activity of superoxide dismutase and restored sulfhydryl content in the animal lungs compared with those in the PAH group. Additionally, BB restored expression of the antioxidant transcriptional factor Nrf2 in the lungs of the animal subjects. Finally, BB normalized the endothelin receptor (ETA/ETB) expression ratio in the animal lungs, which were increased in the PAH group. CONCLUSION: Intervention with BB mitigated functional PAH outcomes through improvement of the pulmonary redox state. Our results provide a basis for future research on natural antioxidant interventions as a novel treatment strategy in PAH.


Assuntos
Antioxidantes/farmacologia , Pressão Arterial/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Extratos Vegetais/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Pulmão/irrigação sanguínea , Masculino , Monocrotalina/farmacologia , Oxirredução/efeitos dos fármacos , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar
6.
J Cardiovasc Pharmacol ; 72(5): 214-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30212415

RESUMO

There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA