Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci ; 88(6): 2583-2594, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37092315

RESUMO

Campylobacter is one of the most common foodborne bacterial pathogens causing illness, known as campylobacteriosis, in the United States. More than 70% of the campylobacteriosis cases have direct or indirect relation with poultry/poultry products. Currently, both conventional and organic/pasture poultry farmers are searching for sustainable alternative to antibiotics which can reduce colonization and cross-contamination of poultry products with Campylobacter and promote poultry health and growth. Probiotic and their nutritional supplement, known as prebiotic, have become consumers' preferences as alternatives to antibiotics/chemicals. In this study, we evaluated the combined effect of plant-derived prebiotic and probiotic-derived metabolites in reducing growth of Campylobacter in cecum contents, a simulated chicken gut condition. Cecum contents were collected from chickens pre-inoculated with kanamycin-resistant Campylobacter (CJRMKm), were incubated over 48 h time period, while being supplemented with either berry phenolic extract (BPE), cell free cultural supernatant from an engineered probiotic, Lactobacillus casei, or their combination. It was found that combine treatments were able to reduce both inoculated and naturally colonized Campylobacter more effectively. Microbiome analysis using 16S rRNA sequencing also revealed that combine treatments were capable to alter natural microflora positively within chicken cecum contents. Differences were observed in bacterial abundance at both phylum and genus level but did not show significant alteration in alpha diversity due to this treatment. PRACTICAL APPLICATION: The results of this study provide critical information for understanding the potential of synbiotic as an alternative in sustainable poultry farming. The outcomes of this study will lead future direction of using combination of probiotic-derived metabolites and BPE in poultry farming.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Lacticaseibacillus casei , Microbiota , Doenças das Aves Domésticas , Simbióticos , Animais , Galinhas/microbiologia , Campylobacter/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Frutas , RNA Ribossômico 16S , Ceco/microbiologia , Aves Domésticas/genética , Fenóis/farmacologia , Bactérias/genética , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Doenças das Aves Domésticas/microbiologia
2.
J Microbiol ; 58(6): 489-498, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32329017

RESUMO

The growing threat of emergent multidrug-resistant enteric bacterial pathogens, and their adopted virulence properties are directing to find alternative antimicrobials and/or development of dietaries that can improve host gut health and/or defense. Recently, we found that modified Lactobacillus casei (Lc + CLA) with increased production of conjugated linoleic acid has antimicrobial and other beneficial properties. Further, prebiotic alike products such as berry pomace extracts (BPEs), increase the growth of probiotics and inhibit the growth of certain bacterial pathogens. In this study, we evaluated the antibacterial effect of genetically modified Lc + CLA along with BPEs against major enteric pathogen Salmonella enterica serovar Typhimurium (ST). In mixed culture condition, the growth of ST was significantly reduced in the presence of Lc + CLA and/or BPEs. Bacterial cell-free cultural supernatant (CFCS) collected from wild-type Lc or modified Lc + CLA strains also inhibited the growth and survival of ST, and those inhibitory effects were enhanced in the presence of BPEs. We also found that the interaction of the pathogen with cultured host (HD-11 and INT-407) cells were also altered in the presence of either Lc or Lc + CLA strain or their CFCSs significantly. Furthermore, the relative expression of genes related to ST virulence and physicochemical properties of ST was altered by the effect of CFCSs of either Lc or Lc + CLA. These findings indicate that a diet containing synbiotic, specifically linoleic acid, over-produced Lc + CLA and prebiotic product BPEs, might have the potential to be effective in controlling ST growth and pathogenesis.


Assuntos
Antibacterianos/farmacologia , Lacticaseibacillus casei/metabolismo , Ácido Linoleico/farmacologia , Extratos Vegetais/farmacologia , Prebióticos/microbiologia , Probióticos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Linhagem Celular , Frutas/química , Humanos , Salmonella typhimurium/patogenicidade , Virulência/efeitos dos fármacos
3.
J Food Prot ; 83(8): 1463-1471, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299102

RESUMO

ABSTRACT: Organic farming, including integrated crop-livestock farms and backyard farming, is gaining popularity in the United States, and products from these farms are commonly sold at farmers' markets, local stores, and roadside stalls. Because organic farms avoid using antibiotics and chemicals and because they use composted animal waste and nonprofessional harvesting and packaging methods, their products have an increased risk of cross-contamination with zoonotic pathogens. This study sets out to evaluate the efficiency of new postharvest disinfection processes using natural berry pomace extracts (BPEs) as a means to reduce the bacterial load found in two common leafy greens, spinach and celery. Spinach and celery were inoculated with a fixed bacterial load of Salmonella Typhimurium and later were soaked in BPE-supplemented water (wBPE) for increasing periods of time, at two different temperatures (24 and 4°C). The remaining live bacteria were quantified (log CFU per leaf), and numbers were compared with those on vegetables soaked in water alone. The relative expression of virulence genes (hilA1/C1/D1, invA1/C1/E1/F1) of wBPE-treated Salmonella Typhimurium was determined. For spinach, there was a significant (P < 0.05) reduction of Salmonella Typhimurium: 0.2 to 1.2 log CFU/mL and 0.5 to 5 log CFU/mL at 24 and 4°C, respectively. For celery, there was also a significant (P < 0.05) reduction of Salmonella Typhimurium at either 24 or 4°C. The changes in relative expression of virulence genes of Salmonella Typhimurium isolated from spinach and celery varied depending on the treatment conditions but showed a significant down-regulation of inv genes when treated at 24°C for 1,440 min (P < 0.05). After seven uses, the total polyphenolic compounds in wBPE remained at an effective concentration. This research suggests that soaking these vegetables with BPE-containing water at lower temperatures can still reduce the Salmonella Typhimurium load enough to minimize the risk of infection and alter virulence properties.


Assuntos
Frutas , Spinacia oleracea , Animais , Extratos Vegetais/farmacologia , Salmonella typhimurium/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA