Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Res ; 35(9): 4757-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26254366

RESUMO

The purpose of the present study was to develop an advanced method of anti-angiogenic chemoembolization to target morphological vascular heterogeneity in tumors and further the therapeutic efficacy of cancer treatment. This new chemoembolization approach was designed using resorbable calcium-phosphate ceramic microspheres (CPMs), in a mixture of three different sizes, which were loaded with an anti-angiogenic agent to target the tumor vasculature in highly angiogenic solid tumors in humans in vivo. The human uterine carcinosarcoma cell line, FU-MMT-3, was used in this study because the tumor is highly aggressive and exhibits a poor response to radiotherapy and chemotherapeutic agents that are in current use. CPMs loaded with TNP-470, an anti-angiogenic agent, were injected into FU-MMT-3 xenografts in nude mice three times per week for 8 weeks. The treatment with TNP-470-loaded CPMs of three different diameters achieved a greater suppression of tumor growth in comparison to treatment with single-size TNP-470-loaded CPMs alone, and the control. Severe loss of body weight was not observed in any mice treated with any size of TNP-470-loaded CPMs. These results suggest that treatment with a mixture of differently-sized anti-angiogenic CPMs might be more effective than treatment with CPMs of a single size. This advanced chemoembolization method, which incorporated an anti-angiogenic agent to target the morphological vascular heterogeneity of tumors may contribute to effective treatment of locally advanced or recurrent solid tumors.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Fosfatos de Cálcio/uso terapêutico , Cerâmica/uso terapêutico , Quimioembolização Terapêutica , Microesferas , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Cristalização , Cicloexanos/farmacologia , Cicloexanos/uso terapêutico , Humanos , Camundongos Nus , Microscopia Eletrônica de Varredura , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/patologia , O-(Cloroacetilcarbamoil)fumagilol , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Biosci (Elite Ed) ; 6(1): 175-84, 2014 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-24389151

RESUMO

Bio-effects mediated by non-ionizing electromagnetic fields (EMF) have become a hot topic of research in the last decades. This interest has been triggered by a growing public concern about the rapid expansion of telecommunication devices and possible consequences of their use on human health. Despite a feasibility study of potential negative impacts, the therapeutic advantages of EMF could be effectively harnessed for the treatment of cancer and other diseases. This review aims to examine recent findings relating to the mechanisms of action underlying the bio-effects induced by non-ionizing EMF. The potential of non-thermal and thermal effects is discussed in the context of possible applications for the induction of apoptosis, formation of reactive oxygen species, and increase of membrane permeability in malignant cells. A special emphasis has been put on the combination of EMF with magnetic nano-particles and ultrasound for cancer treatment. The review encompasses both human and animal studies.


Assuntos
Apoptose/efeitos da radiação , Permeabilidade da Membrana Celular/efeitos da radiação , Temperatura Alta , Magnetoterapia/efeitos adversos , Magnetoterapia/métodos , Neoplasias/terapia , Radiação não Ionizante/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Nanopartículas/uso terapêutico , Ultrassonografia/métodos
3.
Cancer Sci ; 98(6): 929-35, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17433035

RESUMO

Microvascular endothelial cells, which are recruited by tumors, have become an important target in cancer therapy. This study firstly examined the antitumor effect of angiogenesis inhibitor combined with ultrasound (US) irradiation for human cancer in vivo and evaluated its vascularity using color Doppler US in real time with a microbubble US contrast agent. A human uterine sarcoma cell line, FU-MMT-1, was used in vivo because this tumor is one of the most malignant neoplasms of the human solid tumors and it also has a poor response to any of the chemotherapeutic agents currently used, as well as to radiotherapy. In angiogenic inhibitors, TNP-470 was selected to use in an in vivo study, because this agent showed a higher inhibitory effect in tube formation assay in vitro, than that of FR118487, or thalidomide. The FU-MMT-1 xenografts in nude mice were treated using US at a low-intensity (2.0 w/cm(2), 1MHZ) for 4 min three times per week each after the subcutaneous injection of TNP-470 (30 mg/kg), an angiogenesis inhibitor, and this treatment was continued for 8 weeks. Either treatment of US alone or TNP-470 alone showed a suppression of tumor growth, in comparison to the non-treatment group (control), and a significantly enhanced effect was obtained using the combined treatment. A reduction in the intratumoral vascularity, which was evaluated using both color Doppler and immunohistochemistry, was significantly demonstrated using the combined treatment, in comparison to each treatment alone, and the control. No side-effect was observed in any mice in the combined treatment group. These results suggest that the antitumor effect of TNP-470 for uterine sarcoma was accelerated by US irradiation in vivo and this combination might be a potentially effective for new cancer therapy.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Cicloexanos/uso terapêutico , Sarcoma/terapia , Sesquiterpenos/uso terapêutico , Terapia por Ultrassom/métodos , Neoplasias Uterinas/terapia , Inibidores da Angiogênese/administração & dosagem , Animais , Cicloexanos/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Nus , Microbolhas , O-(Cloroacetilcarbamoil)fumagilol , Sarcoma/irrigação sanguínea , Sesquiterpenos/administração & dosagem , Ultrassom , Neoplasias Uterinas/irrigação sanguínea , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA