RESUMO
Periodontitis affects oral tissues and induces systemic inflammation, which increases the risk of cardiovascular disease and metabolic syndrome. Subgingival plaque accumulation is a trigger of periodontitis. Fusobacterium nucleatum (FN) contributes to subgingival biofilm complexity by intercalating with early and late bacterial colonizers on tooth surfaces. In addition, inflammatory responses to FN are associated with the progression of periodontitis. Nigella sativa Lin. seed, which is known as black cumin (BC), has been used as a herbal medicine to treat ailments such as asthma and infectious diseases. The current study examined the inhibitory effect of BC oil and its active constituents, thymol (TM) and thymoquinone (TQ), on FNassociated biofilm and inflammation. FNcontaining biofilms were prepared by cocultivation with an early dental colonizer, Actinomyces naeslundii (AN). The stability and biomass of FN/AN dual species biofilms were significantly higher compared with FN alone. This effect was retained even with prefixed cells, indicating that FN/AN coaggregation is mediated by physicochemical interactions with cell surface molecules. FN/AN biofilm formation was significantly inhibited by 0.1% TM or TQ. Confocal laser scanning microscopy indicated that treatment of preformed FN/AN biofilm with 0.01% of BC, TM or TQ significantly reduced biofilm thickness, and TQ demonstrated a cleansing effect equivalent to that of isopropyl methylphenol. TQ dosedependently suppressed TNFα production from a human monocytic cell line, THP1 exposed to FN, yet showed no toxicity to THP1 cells. These results indicated that oral hygiene care using TQ could reduce FNassociated biofilm and inflammation in gingival tissue.
Assuntos
Benzoquinonas/farmacologia , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/fisiologia , Inflamação/metabolismo , Actinomyces/citologia , Actinomyces/efeitos dos fármacos , Actinomyces/fisiologia , Fusobacterium nucleatum/citologia , Gengiva/efeitos dos fármacos , Humanos , Microscopia Confocal , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Óleos de Plantas/química , Células THP-1 , Timol/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Clostridium perfringens possesses the ethanolamine (EA) utilization (eut) system encoded within the eut operon, which utilizes the EA as a carbon, nitrogen and energy source. To determine the role of the eut system in C. perfringens growth, an in-frame deletion of the eutABC genes was made in strain HN13 to generate the eutABC-deleted mutant strain HY1701. Comparison of HN13 and HY1701 growth in media supplemented with 1.0% glucose and/or 1.0% EA showed that glucose enhanced the growth of both strains, whereas EA enhanced HN13 growth, but not that of HY1701, indicating that the eut system is necessary for C. perfringens to utilize EA. The two-component regulatory system EutVW is needed to induce eut gene expression in response to EA whereas the global virulence regulator VirRS differentially controlled eut gene expression depending on glucose and EA availability. To assess the role of the eut system in vivo, an equal number of HN13 and HY1701â¯cells were injected into the right thigh muscles of mice. Mice infected with HY1701 showed fewer symptoms than those injected with HN13. The mortality rate of mice infected with HY1701 tended to be lower than for mice infected with HN13. In addition, in infected tissues from mice injected with a mixture of HN13 and HY1701, HN13 outnumbered HY1701. PCR screening demonstrated that C. perfringens isolated from gas gangrene and sporadic diarrhea cases carried both eut genes and the perfringolysin O gene (pfoA) as well as the phospholipase C gene (plc). However, pfoA was not detected in isolates from food poisoning patients and healthy volunteers. Culture supernatants prepared from HN13 grown in media containing 7.5% sheep red blood cells induced significantly higher eutB expression levels compared to those from plc- and/or pfoA-deletion mutants. Together, these results indicate that the eut system plays a nutritional role for C. perfringens during histolytic infection.
Assuntos
Clostridium perfringens/crescimento & desenvolvimento , Clostridium perfringens/metabolismo , Clostridium perfringens/patogenicidade , Etanolamina/metabolismo , Gangrena Gasosa/metabolismo , Animais , Toxinas Bacterianas/genética , Clostridium perfringens/genética , Modelos Animais de Doenças , Doenças Transmitidas por Alimentos/microbiologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Proteínas Hemolisinas/genética , Humanos , Hidroxocobalamina/antagonistas & inibidores , Masculino , Camundongos , Mortalidade , Óperon , Deleção de Sequência , Ovinos , Fosfolipases Tipo C/genética , VirulênciaRESUMO
BACKGROUND: Dental plaque formed on tooth surfaces is a complex ecosystem composed of diverse oral bacteria and salivary components. Accumulation of dental plaque is a risk factor for dental caries and periodontal diseases. L-arginine has been reported to decrease the risk for dental caries by elevating plaque pH through the activity of arginine deiminase in oral bacteria. Here we evaluated the potential of L-arginine to remove established oral biofilms. METHODS: Biofilms were formed using human saliva mixed with Brain Heart Infusion broth supplemented with 1 % sucrose in multi-well plates or on plastic discs. After washing the biofilms with saline, citrate (10 mM, pH3.5), or L-arginine (0.5 M, pH3.5), the retained biofilms were analyzed by crystal violet staining, scanning electron microscopy, and Illumina-based 16S rDNA sequencing. RESULTS: Washing with acidic L-arginine detached oral biofilms more efficiently than saline and significantly reduced biofilm mass retained in multi-well plates or on plastic discs. Illumina-based microbiota analysis showed that citrate (pH3.5) preferentially washed out Streptococcus from mature oral biofilm, whereas acidic L-arginine prepared with 10 mM citrate buffer (pH3.5) non-specifically removed microbial components of the oral biofilm. CONCLUSIONS: Acidic L-arginine prepared with citrate buffer (pH3.5) effectively destabilized and removed mature oral biofilms. The acidic L-arginine solution described here could be used as an additive that enhances the efficacy of mouth rinses used in oral hygiene.