Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimmunomodulation ; 20(6): 323-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23948712

RESUMO

BACKGROUND: Within hours of intranasal challenge, mouse-adapted H1N1 A/Puerto Rico/8/34 (PR8) influenza genomic RNA is found in the olfactory bulb (OB) and OB pro-inflammatory cytokines are up-regulated. Severing the olfactory tract delays the acute-phase response (APR) and the APR is attenuated by immunization. OBJECTIVES: To determine if immunization affects OB localization of influenza or the molecular brain mechanisms regulating APR. METHODS: Male mice were immunized with PR8 influenza, then OB viral RNA, APR, and influenza-related cytokine responses were determined after homologous viral challenge. RESULTS: Immunization did not prevent influenza OB viral invasion within 24 h of viral challenge. However, it greatly attenuated OB viral RNA 6 days after viral challenge and the APR including hypothermia and body weight loss responses. Within the OB, 24 h after influenza challenge, prior immunization blocked virus-induced up-regulation of toll-like receptor 7 and interferon (IFN) γ mRNAs. At this time, hypothalamic (HT) growth hormone-releasing hormone receptor and tumor necrosis factor-α mRNAs were greatly enhanced in immunized but not in positive control mice. By 6 days after viral challenge, OB and HT mRNAs returned towards baseline values. In the lung, mRNA up-regulation was greater than that in the brain and maximized 6 days after challenge. Lung IFNγ mRNA decreased at 24 h but increased 6 days after challenge in the positive compared to negative controls. Immunization prevented the up-regulation of most of the flu-related mRNAs measured in lungs. CONCLUSION: Collectively, these data suggest a role for OB and HT involvement in immunization protection against influenza infection.


Assuntos
Reação de Fase Aguda/imunologia , Hipotálamo/imunologia , Neuroimunomodulação/fisiologia , Bulbo Olfatório/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinação , Animais , Citocinas/biossíntese , Citocinas/imunologia , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Viral/análise
2.
Brain Res ; 1226: 89-98, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18620339

RESUMO

Hypothalamic and cortical mRNA levels for cytokines such as interleukin-1beta (IL1beta), tumor necrosis factor alpha (TNFalpha), nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are impacted by systemic treatments of IL1beta and TNFalpha. To investigate the time course of the effects of IL1beta and TNFalpha on hypothalamic and cortical cytokine gene expression, we measured mRNA levels for IL1beta, TNFalpha, interleukin-6 (IL-6), interleukin-10 (IL-10), IL1 receptor 1, BDNF, NGF, and glutamate decarboxylase-67 in vitro using hypothalamic and cortical primary cultures. IL1beta and TNFalpha mRNA levels increased significantly in a dose-dependent fashion after exposure to either IL1beta or TNFalpha. IL1beta increased IL1beta mRNA in both the hypothalamic and cortical cultures after 2-6 h while TNFalpha mRNA increased significantly within 30 min and continued to rise up to 2-6 h. Most of the other mRNAs showed significant changes independent of dose in vitro. In vivo, intracerebroventricular (icv) injection of IL1beta or TNFalpha also significantly increased IL1beta, TNFalpha and IL6 mRNA levels in the hypothalamus and cortex. IL1beta icv, but not TNFalpha, increased NGF mRNA levels in both these areas. Results support the hypothesis that centrally active doses of IL1beta and TNFalpha enhance their own mRNA levels as well as affect mRNA levels for other neuronal growth factors.


Assuntos
Citocinas/genética , Interleucina-1alfa/farmacologia , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Análise de Variância , Animais , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipotálamo/citologia , Masculino , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
3.
Am J Physiol Regul Integr Comp Physiol ; 293(2): R922-30, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17537840

RESUMO

Growth hormone-releasing hormone (GHRH), its receptor (GHRHR), and other members of the somatotropic axis are involved in non-rapid eye movement sleep (NREMS) regulation. Previously, studies established the involvement of hypothalamic GHRHergic mechanisms in NREMS regulation, but cerebral cortical GHRH mechanisms in sleep regulation remained uninvestigated. Here, we show that unilateral application of low doses of GHRH to the surface of the rat somatosensory cortex ipsilaterally decreased EEG delta wave power, while higher doses enhanced delta power. These actions of GHRH on EEG delta wave power occurred during NREMS but not during rapid eye movement sleep. Further, the cortical forms of GHRH and GHRHR were identical to those found in the hypothalamus and pituitary, respectively. Cortical GHRHR mRNA and protein levels did not vary across the day-night cycle, whereas cortical GHRH mRNA increased with sleep deprivation. These results suggest that cortical GHRH and GHRHR have a role in the regulation of localized EEG delta power that is state dependent, as well as in their more classic hypothalamic role in NREMS regulation.


Assuntos
Ritmo Delta , Hormônio Liberador de Hormônio do Crescimento/fisiologia , Receptores de Neuropeptídeos/fisiologia , Receptores de Hormônios Reguladores de Hormônio Hipofisário/fisiologia , Fases do Sono/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hipotálamo/fisiologia , Masculino , Microinjeções , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Privação do Sono/fisiopatologia , Fases do Sono/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos
4.
Brain Behav Immun ; 21(1): 60-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15951155

RESUMO

Influenza virus infection up-regulates cytokines such as interleukin-1beta (IL-1beta) and activates the somatotropic axis and the hypothalamic-pituitary axis. Mice with deficits in growth hormone releasing hormone (GHRH) signaling (lit/lit mice) respond to influenza virus challenge with a progressive decrease in sleep and lower survival rates. Current experiments characterize plasma glucocorticoid responses and hypothalamic and lung mRNA expression of sleep-related genes in lit/lit mice and their heterozygous controls after influenza virus challenge. lit/lit mice had higher basal and post-infection plasma corticosterone levels compared to controls. In contrast, the heterozygous mice increased hypothalamic GHRH-receptor, CRH-type 2 receptor, IL-1beta, and tumor necrosis factor-alpha (TNF-alpha) mRNAs after virus treatment while the lit/lit mice failed to up-regulate these substances. In contrast, lung levels of IL-1beta and TNF-alpha mRNAs were greater in the lit/lit mice. These data are consistent with the hypothesis that the sleep response to influenza infection is mediated, in part, by an up-regulation of hypothalamic sleep-related transcripts and they also show that a primary deficit in GHRH signaling is associated with enhanced corticosterone secretion and attenuated hypothalamic cytokine response to infection.


Assuntos
Corticosterona/sangue , Citocinas/metabolismo , Hipotálamo/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Neuropeptídeos/fisiologia , Receptores de Hormônios Reguladores de Hormônio Hipofisário/fisiologia , Análise de Variância , Animais , Ritmo Circadiano/imunologia , Corticosterona/imunologia , Citocinas/imunologia , Perfilação da Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/deficiência , Hipotálamo/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , RNA Mensageiro/análise , Sono/imunologia , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Regulação para Cima
5.
J Neurosci ; 25(44): 10282-9, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16267236

RESUMO

Prolactin (PRL) is implicated in the modulation of spontaneous rapid eye movement sleep (REMS). Previous models of hypoprolactinemic animals were characterized by changes in REMS, although associated deficits made it difficult to ascribe changes in REMS to reduced PRL. In the current studies, male PRL knock-out (KO) mice were used; these mice lack functional PRL but have no known additional deficits. Spontaneous REMS was reduced in the PRL KO mice compared with wild-type or heterozygous littermates. Infusion of PRL for 11-12 d into PRL KO mice restored their REMS to that occurring in wild-type or heterozygous controls. Six hours of sleep deprivation induced a non-REMS and a REMS rebound in both PRL KO mice and heterozygous littermates, although the REMS rebound in the KOs was substantially less. Vasoactive intestinal peptide (VIP) induced REMS responses in heterozygous mice but not in KO mice. Similarly, an ether stressor failed to enhance REMS in the PRL KOs but did in heterozygous littermates. Finally, hypothalamic mRNA levels for PRL, VIP, neural nitric oxide synthase (NOS), inducible NOS, and the interferon type I receptor were similar in KO and heterozygous mice. In contrast, tyrosine hydroxylase mRNA was lower in the PRL KO mice than in heterozygous controls and was restored to control values by infusion of PRL, suggesting a functioning short-loop negative feedback regulation in PRL KO mice. Data support the notion that PRL is involved in REMS regulation.


Assuntos
Prolactina/deficiência , Sono REM/genética , Animais , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prolactina/sangue , Prolactina/genética , Sono REM/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia
6.
Brain Res Mol Brain Res ; 137(1-2): 213-22, 2005 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-15950780

RESUMO

Interleukin-1 beta (IL-1) and CREB have many CNS actions including sleep regulation and hippocampal-dependent learning. CREB acts in part via CREB-binding protein (CBP). We thus determined whether IL-1 could induce CBP gene expression. Initially, cultured hippocampal cells were treated with IL-1 and differential display reverse transcription was used to identify up- and down-regulated genes. We then sequenced rat CBP. Of the IL-1-upregulated genes, CBP and adenine nucleotide translocator-1 (ANT-1) were investigated in vivo. In these experiments, IL-1 was given to rats intraventricularly and sacrificed 2 h later; both CBP and ANT-1 transcripts were upregulated in the cerebral cortex and hypothalamus. We conclude that rat CBP shares many of the functional domains as human and murine CBP and that IL-1 upregulates genes previously associated with learning and sleep.


Assuntos
Química Encefálica/genética , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Interleucina-1/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Proteína de Ligação a CREB , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Sequência Conservada/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Interleucina-1/farmacologia , Aprendizagem/fisiologia , Masculino , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , RNA Mensageiro/efeitos dos fármacos , Ratos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Sono/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Brain Res Mol Brain Res ; 129(1-2): 179-84, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15469894

RESUMO

Prolactin (PRL) and vasoactive intestinal polypeptide (VIP) mRNA levels were elevated in the brainstem of neuronal nitric oxide synthase (nNOS) gene knockout (KO) mice compared to the levels in nNOS control mice. In addition, PRL mRNA levels increased in the hypothalamus and the brainstem of nNOS control mice after administration of 7-nitro-indazole (7-NI), a relatively selective nNOS inhibitor. The results suggest that NO inhibits PRL. No differences in the genes measured were observed in inducible NOS KO mice.


Assuntos
Tronco Encefálico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Animais , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Indazóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Peptídeo Intestinal Vasoativo/metabolismo
8.
Brain Behav Immun ; 18(4): 390-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15157956

RESUMO

It is well established that cytokines such as tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) are involved in physiological sleep regulation, yet their downstream somnogenic mechanisms remain largely uninvestigated. Nitric oxide (NO) is an effector molecule for some TNFalpha actions. Neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) gene knockout (KO) mice sleep differently than their respective controls. In this study, we tested the hypothesis that NO mediates TNFalpha-induced sleep using iNOS and nNOS KO mice and their corresponding wild-type controls. Systemic administration of TNFalpha increased non-rapid eye movement sleep (NREMS) in the two control strains and in the iNOS KO mice during the first 4 h post-injection but failed to increase NREMS in nNOS KO mice. Rapid eye movement sleep (REMS) was suppressed by TNFalpha in nNOS controls but not in the other strains examined. The results suggest that TNFalpha affects sleep, in part, through nNOS.


Assuntos
Óxido Nítrico Sintase/fisiologia , Sono/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Encéfalo/fisiologia , Eletroencefalografia , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/deficiência , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Fases do Sono/fisiologia , Especificidade da Espécie , Fator de Necrose Tumoral alfa/administração & dosagem
9.
Am J Physiol Regul Integr Comp Physiol ; 284(1): R131-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12388430

RESUMO

The role of the somatotropic axis in sleep regulation was studied by using the lit/lit mouse with nonfunctional growth hormone (GH)-releasing hormone (GHRH) receptors (GHRH-Rs) and control heterozygous C57BL/6J mice, which have a normal phenotype. During the light period, the lit/lit mice displayed significantly less spontaneous rapid eye movement sleep (REMS) and non-REMS (NREMS) than the controls. Intraperitoneal injection of GHRH (50 microg/kg) failed to promote sleep in the lit/lit mice, whereas it enhanced NREMS in the heterozygous mice. Subcutaneous infusion of GH replacement stimulated weight gain, increased the concentration of plasma insulin-like growth factor-1 (IGF-1), and normalized REMS, but failed to restore normal NREMS in the lit/lit mice. The NREMS response to a 4-h sleep deprivation was attenuated in the lit/lit mice. In control mice, intraperitoneal injection of ghrelin (400 microg/kg) elicited GH secretion and promoted NREMS, and intraperitoneal administration of the somatostatin analog octretotide (Oct, 200 microg/kg) inhibited sleep. In contrast, these responses were missing in the lit/lit mice. The results suggest that GH promotes REMS whereas GHRH stimulates NREMS via central GHRH-Rs and that GHRH is involved in the mediation of the sleep effects of ghrelin and somatostatin.


Assuntos
Deleção de Genes , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Sono/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Grelina , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento/farmacologia , Hormônio Liberador de Hormônio do Crescimento/administração & dosagem , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Octreotida/administração & dosagem , Octreotida/farmacologia , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/farmacologia , Fenótipo , Receptores de Neuropeptídeos/fisiologia , Receptores de Hormônios Reguladores de Hormônio Hipofisário/fisiologia , Sono/efeitos dos fármacos , Sono/genética , Sono REM/efeitos dos fármacos , Sono REM/genética , Sono REM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA