Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Pharm ; 86(3)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200330

RESUMO

Sea cucumbers have long been utilized in foods and Asiatic folk medicines for their nutritive and health benefits. Herein, three sea cucumber species were investigated and Holothuria atra showed the highest cytotoxicity among these. Next, a desulfated saponin, desulfated echinoside B (DEB), was purified from H. atra through bioassay-guided fractionation. LC-ESI-MS (Liquid chromatography-electrospray ionization mass spectrometry) analysis also showed H. atra to be a rich source of saponins. DEB showed cytotoxicity on cancer cells with IC50 values of 0.5⁻2.5 µM, and on brine shrimps with an IC50 value of 9.2 µM. In molecular docking studies, DEB was found to bind strongly with the catalytic domain of PAK1 (p21-activated kinase 1) and it showed binding energy of -8.2 kcal/mol compared to binding energy of -7.7 kcal/mol for frondoside A (FRA). Both of them bind to the novel allosteric site close to the ATP-binding cleft. Molecular dynamics (MD) simulation demonstrated that DEB can form a more stable complex with PAK1, remaining inside the allosteric binding pocket and forming the maximum number of hydrogen bonds with the surrounding residues. Moreover, important ligand binding residues were found to be less fluctuating in the DEB-PAK1 complex than in the FRA-PAK1 complex throughout MD simulation. Our experimental and computational studies showed that both DEB and FRA can act as natural allosteric PAK1 inhibitors and DEB appeared to be more promising than FRA.

2.
Malar J ; 17(1): 244, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941026

RESUMO

BACKGROUND: Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. METHODS: The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC50) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. RESULTS: Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC50 < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC50 < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. CONCLUSIONS: The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC50 values of the compounds were comparable to that of chloroquine and better than that of pyrimethamine. These compounds and extracts derived from TCMs thus show promise as potential future anti-malarial drugs.


Assuntos
Antimaláricos/farmacologia , Medicina Tradicional Chinesa , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Humanos , Malária Falciparum/prevenção & controle
3.
Cell Host Microbe ; 16(6): 795-805, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25464832

RESUMO

Host factors required for viral replication are ideal drug targets because they are less likely than viral proteins to mutate under drug-mediated selective pressure. Although genome-wide screens have identified host proteins involved in influenza virus replication, limited mechanistic understanding of how these factors affect influenza has hindered potential drug development. We conducted a systematic analysis to identify and validate host factors that associate with influenza virus proteins and affect viral replication. After identifying over 1,000 host factors that coimmunoprecipitate with specific viral proteins, we generated a network of virus-host protein interactions based on the stage of the viral life cycle affected upon host factor downregulation. Using compounds that inhibit these host factors, we validated several proteins, notably Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) and JAK1, as potential antiviral drug targets. Thus, virus-host interactome screens are powerful strategies to identify targetable host factors and guide antiviral drug development.


Assuntos
Antivirais/farmacologia , Influenza Humana/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Virais/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Influenza Humana/virologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Orthomyxoviridae/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Virais/genética
4.
Clin Infect Dis ; 52(4): 432-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21248368

RESUMO

BACKGROUND: Although influenza virus resistance to the neuraminidase inhibitor zanamivir is reported less frequently than is resistance to the neuraminidase inhibitor oseltamivir in clinical settings, it is unknown whether this difference is due to the limited use of zanamivir or to an inherent property of the drug. We therefore compared the prevalence of drug-resistant viruses and virus shedding in seasonal influenza virus-infected children treated with either oseltamivir or zanamivir. METHODS: Clinical specimens (throat or nasal swab) were collected from a total of 144 pediatric influenza patients during the 2005-2006, 2006-2007, 2007-2008, and 2008-2009 influenza seasons. Neuraminidase inhibitor-resistant mutants were detected among the isolated viruses by sequencing the viral hemagglutinin and neuraminidase genes. Sensitivity of the viruses to neuraminidase inhibitors was tested by neuraminidase inhibition assay. RESULTS: In oseltamivir- or zanamivir-treated influenza patients who were statistically comparable in their age distribution, vaccination history, and type or subtype of virus isolates, the virus-shedding period in zanamivir-treated patients was significantly shorter than that in oseltamivir-treated patients. Furthermore, the frequency of zanamivir-resistant viruses was significantly lower than that of oseltamivir-resistant viruses. CONCLUSION: In comparison with treatment with oseltamivir, treatment of pediatric patients with zanamivir resulted in the emergence of fewer drug-resistant influenza viruses and a shorter virus-shedding period. We conclude that zanamivir shows promise as a better therapy for pediatric influenza patients.


Assuntos
Farmacorresistência Viral , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Orthomyxoviridae/efeitos dos fármacos , Oseltamivir/uso terapêutico , Eliminação de Partículas Virais , Zanamivir/uso terapêutico , Adolescente , Antivirais/farmacologia , Antivirais/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mucosa Nasal/virologia , Neuraminidase/antagonistas & inibidores , Orthomyxoviridae/isolamento & purificação , Oseltamivir/farmacologia , Faringe/virologia , RNA Viral/genética , Análise de Sequência de DNA , Resultado do Tratamento , Zanamivir/farmacologia
5.
Biochem Biophys Res Commun ; 358(3): 751-6, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17506985

RESUMO

Mulberry is commonly used to feed silkworms. Here we examined whether a dietary intake of mulberry leaf (ML) could affect atherogenesis in vivo and in vitro. Apolipoprotein E-deficient mice were fed either normal chow (control group) or a diet containing 1% ML powder (ML group) from 6 weeks of age. The mice were sacrificed after 12 weeks. The susceptibility of plasma lipoprotein to oxidation was assessed using diene formation. A significant increase in the lag time of lipoprotein oxidation was detected in the ML group compared with the control group. Furthermore, the ML group showed a 40% reduction in atherosclerotic lesion size in the aortae compared with the control. We also examined the direct anti-oxidative activity of ML in vitro. Aqueous extract of ML had a strong scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and inhibited lipoprotein oxidation. These results confirm that ML contains anti-oxidative substances that might help prevent atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Aterosclerose/prevenção & controle , Morus/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Animais , Antioxidantes/farmacologia , Colesterol/sangue , Humanos , Processamento de Imagem Assistida por Computador , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA