Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(51): 23405-23420, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36513373

RESUMO

Aqueous Zn/MnO2 batteries (AZMOB) with mildly acidic electrolytes hold promise as potential green grid-level energy storage solutions for clean power generation. Mechanistic understanding is critical to advance capacity retention needed by the application but is complex due to the evolution of the cathode solid phases and the presence of dissolved manganese in the electrolyte due to a dissolution-deposition redox process. This work introduces operando multiphase extended X-ray absorption fine structure (EXAFS) analysis enabling simultaneous characterization of both aqueous and solid phases involved in the Mn redox reactions. The methodology was successfully conducted in multiple electrolytes (ZnSO4, Zn(CF3SO3)2, and Zn(CH3COO)2) revealing similar manganese coordination environments but quantitative differences in distribution of Mnn+ species in the solid and solution phases. Complementary Raman spectroscopy was utilized to identify the less crystalline Mn-containing products formed under charge at the cathodes. This was further augmented by transmission electron microscopy (TEM) to reveal the morphology and surface condition of the deposited solids. The results demonstrate an effective approach for bulk-level characterization of poorly crystalline multiphase solids while simultaneously gaining insight into the dissolved transition-metal species in solution. This work provides demonstration of a useful approach toward gaining insight into complex electrochemical mechanisms where both solid state and dissolved active materials are important contributors to redox activity.

2.
Phys Chem Chem Phys ; 24(19): 11471-11485, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35532142

RESUMO

Lithium nickel manganese cobalt oxide (NMC) is a commercially successful Li-ion battery cathode due to its high energy density; however, its delivered capacity must be intentionally limited to achieve capacity retention over extended cycling. To design next-generation NMC batteries with longer life and higher capacity the origins of high potential capacity fade must be understood. Operando hard X-ray characterization techniques are critical for this endeavor as they allow the acquisition of information about the evolution of structure, oxidation state, and coordination environment of NMC as the material (de)lithiates in a functional battery. This perspective outlines recent developments in the elucidation of capacity fade mechanisms in NMC through hard X-ray probes, surface sensitive soft X-ray characterization, and isothermal microcalorimetry. A case study on the effect of charging potential on NMC811 over extended cycling is presented to illustrate the benefits of these approaches. The results showed that charging to 4.7 V leads to higher delivered capacity, but much greater fade as compared to charging to 4.3 V. Operando XRD and SEM results indicated that particle fracture from increased structural distortions at >4.3 V was a contributor to capacity fade. Operando hard XAS revealed significant Ni and Co redox during cycling as well as a Jahn-Teller distortion at the discharged state (Ni3+); however, minimal differences were observed between the cells charged to 4.3 and 4.7 V. Additional XAS analyses using soft X-rays revealed significant surface reconstruction after cycling to 4.7 V, revealing another contribution to fade. Operando isothermal microcalorimetry (IMC) indicated that the high voltage charge to 4.7 V resulted in a doubling of the heat dissipation when compared to charging to 4.3 V. A lowered chemical-to-electrical energy conversion efficiency due to thermal energy waste was observed, providing a complementary characterization of electrochemical degradation. The work demonstrates the utility of multi-modal X-ray and microcalorimetric approaches to understand the causes of capacity fade in lithium-ion batteries with Ni-rich NMC.

3.
ACS Appl Mater Interfaces ; 13(50): 59937-59949, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34898172

RESUMO

Hollandite, α-MnO2, is of interest as a prospective cathode material for hydrated zinc-ion batteries (ZIBs); however, the mechanistic understanding of the discharge process remains limited. Herein, a systematic study on the initial discharge of an α-MnO2 cathode under a hydrated environment was reported using density functional theory (DFT) in combination with complementary experiments, where the DFT predictions well described the experimental measurements on discharge voltages and manganese oxidation states. According to the DFT calculations, both protons (H+) and zinc ions (Zn2+) contribute to the discharging potentials of α-MnO2 observed experimentally, where the presence of water plays an essential role during the process. This study provides valuable insights into the mechanistic understanding of the discharge of α-MnO2 in hydrated ZIBs, emphasizing the crucial interplay among the H2O molecules, the intercalated Zn2+ or H+ ions, and the Mn4+ ions on the tunnel wall to enhance the stability of discharged states and, thus, the electrochemical performances in hydrated ZIBs.

4.
Nanotechnology ; 32(37)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34107466

RESUMO

Zinc ferrite, ZnFe2O4(ZFO), is a promising electrode material for next generation Li-ion batteries because of its high theoretical capacity and low environmental impact. In this report, synthetic control of crystallite size from the nanometer to submicron scale enabled probing of the relationships between ZFO size and electrochemical behavior. A facile two-step coprecipitation and annealing preparation method was used to prepare ZFO with controlled sizes ranging ∼9 to >200 nm. Complementary synchrotron and electron microscopy techniques were used to characterize the series of materials. Increasing the annealing temperature increased crystallinity and decreased microstrain, while local structural ordering was maintained independent of crystallite size. Electrochemical characterization revealed that the smaller sized materials delivered higher capacities during initial lithiation. Larger sized particles exhibited a lack of distinct electrochemical signatures above 1.0 V, suggesting that the longer diffusion length associated with greater crystallite size causes the lithiation process to proceed via non discrete lithium insertion, cation migration, and conversion processes. Notably, larger particles exhibited enhanced electrochemical reversibility over 50 cycles, with capacity retention improving from <20% to >40% at C/2 cycling rate. This intriguing result was probed through x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS) measurements of the cycled electrodes. XAS revealed that the larger crystallite size materials do not completely convert to Fe0during the first lithiation and that independent of size, delithiation results in the formation of nanocrystalline FeO and ZnO phases rather than ZnFe2O4. After 20 cycles, the larger crystallites showed reversibility between partially oxidized FeO in the charged state and Fe0in the discharged state, while the smaller crystallite size material was electrochemically inactive as Fe0. XPS analysis revealed more significant solid electrolyte interphase (SEI) formation on the cycled electrodes utilizing ZFO with smaller crystallite size. This finding suggests that excessive SEI buildup on the smaller sized, higher surface area ZFO particles contributes to their reduced electrochemical reversibility relative to the larger crystallite size materials.

5.
Small ; 16(48): e2005406, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33166057

RESUMO

Aqueous Zn/α-MnO2 batteries have attracted immense interest owing to their high energy density, low cost, and safety, making them desirable for future large-scale energy application. Despite these merits, the comprehensive understanding of their reaction mechanism has been elusive due to the limitations of standard bulk characterization. Here, via transmission electron microscopy, the dissolution-mediated reaction mechanism of a Zn/α-MnO2 system is discovered and explored in full scope to involve reversible formation of Zn4 SO4 (OH)6 ·xH2 O and "birnessite-like" Zn-MnOx phase upon cycling. Overall, α-MnO2 acts primarily as a source for cell activation through dissolution and thus is not directly involved in the Zn redox chemistry. This microscopic study offers a unique knowledge on the unconventional reaction chemistry of Zn/α-MnO2 batteries.

6.
Phys Chem Chem Phys ; 19(31): 20867-20880, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745341

RESUMO

The iron oxide magnetite, Fe3O4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe3O4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe3O4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during the electrochemical (de)lithiation reaction in Fe3O4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe3O4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe3O4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li+ diffusion length in larger crystals results in conversion to Fe0 metal while insertion of Li+ into spinel-Fe3O4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.

7.
Phys Chem Chem Phys ; 17(3): 2034-42, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25478865

RESUMO

The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.


Assuntos
Fontes de Energia Elétrica , Eletroquímica , Fósforo/química , Prata/química , Vanádio/química , Cristalografia por Raios X , Cinética , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA