Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 7(31): 27216-27229, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967026

RESUMO

Nanotherapeutics has emerged as the most sought after approach to tackle the menace of drug-resistant pathogenic bacteria. Among others, biogenic silver nanoparticles (bAgNPs) synthesized using medicinal plant extracts demonstrate promising antibacterial propensity with excellent biocompatibility. Herein, bAgNPs were synthesized through the green chemistry approach using Syzygium cymosum leaf extract as a reducing agent at different pH values (i.e., 5, 7, 8, and 10). The average size of bAgNPs synthesized at pH 5, 7, 8, and 10 was 23.3, 21.3, 17.2, and 35.3 nm, respectively, and all the nanoparticles were negatively charged. Their antibacterial potential was investigated against Bacillus subtilis, Escherichia coli DH5α, E. coli K12, enteropathogenic E. coli, and Salmonella typhi. The highest antibacterial activity was exhibited by bAgNPs synthesized at pH 8 against all the tested bacterial strains, which can be attributed to their small size and greater surface area to volume ratio. The bAgNPs demonstrated the highest zone of inhibition (29.5 ± 0.8 mm) against B. subtilis through oxidation of membrane fatty acids that resulted in the formation of the malondialdehyde-thiobarbituric acid (MDA-TBA) adduct. However, bAgNPs demonstrated excellent hemocompatibility with rat and human red blood cells. Biogenic AgNPs synthesized at pH 8 also exhibited biocompatibility in terms of liver and kidney function biomarkers. Furthermore, hematoxylin and eosin staining of the tissue sections of vital organs (i.e., liver, kidneys, lungs, heart, spleen, and brain) also confirmed the biocompatibility of bAgNPs.

2.
Sci Rep ; 10(1): 11308, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647296

RESUMO

Fibrinogen γ-chain peptide-coated, adenosine 5'-diphosphate (ADP)-encapsulated liposomes (H12-ADP-liposomes) are a potent haemostatic adjuvant to promote platelet thrombi. These liposomes are lipid particles coated with specific binding sites for platelet GPIIb/IIIa and encapsulating ADP. They work at bleeding sites, facilitating haemostasis by promoting aggregation of activated platelets and releasing ADP to strongly activate platelets. In this study, we investigated the therapeutic potential of H12-ADP-liposomes on post-cardiopulmonary bypass (CPB) coagulopathy in a preclinical setting. We created a post-CPB coagulopathy model using male New Zealand White rabbits (body weight, 3 kg). One hour after CPB, subject rabbits were intravenously administered H12-ADP-liposomes with platelet-rich plasma (PRP) collected from donor rabbits (H12-ADP-liposome/PRP group, n = 8) or PRP alone (PRP group, n = 8). Ear bleeding time was greatly reduced for the H12-ADP-liposome/PRP group (263 ± 111 s) compared with the PRP group (441 ± 108 s, p < 0.001). Electron microscopy showed platelet thrombus containing liposomes at the bleeding site in the H12-ADP-liposome/PRP group. However, such liposome-involved platelet thrombi were not observed in the end organs after H12-ADP-liposome administration. These findings suggest that H12-ADP-liposomes could help effectively and safely consolidate platelet haemostasis in post-CPB coagulopathy and may have potential for reducing bleeding complications after cardiovascular surgery with CPB.


Assuntos
Difosfato de Adenosina/uso terapêutico , Adjuvantes Farmacêuticos/uso terapêutico , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Fibrinogênio/uso terapêutico , Lipossomos/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Ponte Cardiopulmonar/efeitos adversos , Hemostáticos/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Coelhos
3.
Artigo em Inglês | MEDLINE | ID: mdl-31649922

RESUMO

Biogenic nanoparticles are the smartest weapons to deal with the multidrug-resistant "superbugs" because of their broad-spectrum antibacterial propensity as well as excellent biocompatibility. The aqueous biogenic silver nanoparticles (Aq-bAgNPs) and ethanolic biogenic silver nanoparticles (Et-bAgNPs) were synthesized using aqueous and ethanolic extracts of Andrographis paniculata stem, respectively, as reducing agents. Electron microscopic images confirmed the synthesis of almost spherical shaped biogenic silver nanoparticles (bAgNPs). The zeta potentials of the nanoparticles were negative and were -22 and -26 mV for Aq-bAgNPs and Et-bAgNPs, respectively. The antibacterial activity of bAgNPs was investigated against seven pathogenic (i.e., enteropathogenic Escherichia coli, Salmonella typhi, Staphylococcus aureus, Vibrio cholerae, Enterococcus faecalis, Hafnia alvei, Acinetobacter baumannii) and three nonpathogenic (i.e., E. coli DH5α, E. coli K12, and Bacillus subtilis) bacteria at different time points (i.e., 12, 16, 20, and 24 h) in a dose-dependent manner (i.e., 20, 40, and 60 µg) through broth dilution assay, disk diffusion assay, CellToxTM Green uptake assay, and trypan blue dye exclusion assay. The lowest minimum inhibitory concentration value for both the bAgNPs was 0.125 µg. Et-bAgNPs showed the highest antibacterial activity against S. aureus at 60 µg after 16 h and the diameter of inhibited zone was 28 mm. Lipid peroxidation assay using all the bacterial strains revealed the formation of malondialdehyde-thiobarbituric acid adduct due to the oxidation of cell membrane fatty acids by bAgNPs. The bAgNPs showed excellent hemocompatibility against human as well as rat red blood cells. Furthermore, there was no significant toxicity observed when the levels of rat serum ALT, AST, γ-GT (i.e., liver function biomarkers), and creatinine (i.e., kidney function biomarker) were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA