Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958754

RESUMO

The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.


Assuntos
Potyvirus , Pequeno RNA não Traduzido , Solanum tuberosum , RNA de Cadeia Dupla/genética , Solanum tuberosum/genética , Interferência de RNA , Potyvirus/genética
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834280

RESUMO

Potato virus Y, an important viral pathogen of potato, has several genetic variants and geographic distributions which could be affected by environmental factors, aphid vectors, and reservoir plants. PVY is transmitted to virus-free potato plants by aphids and passed on to the next vegetative generations through tubers, but the effects of tuber transmission in PVY is largely unknown. By using high-throughput sequencing, we investigated PVY populations transmitted to potato plants by aphids in different climate zones of Russia, namely the Moscow and Astrakhan regions. We analyzed sprouts from the tubers produced by field-infected plants to investigate the impact of tuber transmission on PVY genetics. We found a significantly higher diversity of PVY isolates in the Astrakhan region, where winters are shorter and milder and summers are warmer compared to the Moscow region. While five PVY types, NTNa, NTNb, N:O, N-Wi, and SYR-I, were present in both regions, SYRI-II, SYRI-III, and 261-4 were only found in the Astrakhan region. All these recombinants were composed of the genome sections derived from PVY types O and N, but no full-length sequences of such types were present. The composition of the PVY variants in the tuber sprouts was not always the same as in their parental plants, suggesting that tuber transmission impacts PVY genetics.


Assuntos
Afídeos , Potyvirus , Solanum tuberosum , Animais , Potyvirus/genética , Doenças das Plantas , Solanum tuberosum/genética , Federação Russa , Genoma Viral , Afídeos/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887257

RESUMO

In this work we developed and exploited a spray-induced gene silencing (SIGS)-based approach to deliver double-stranded RNA (dsRNA), which was found to protect potato against potato virus Y (PVY) infection. Given that dsRNA can act as a defence-inducing signal that can trigger sequence-specific RNA interference (RNAi) and non-specific pattern-triggered immunity (PTI), we suspected that these two pathways may be invoked via exogeneous application of dsRNA, which may account for the alterations in PVY susceptibility in dsRNA-treated potato plants. Therefore, we tested the impact of exogenously applied PVY-derived dsRNA on both these layers of defence (RNAi and PTI) and explored its effect on accumulation of a homologous virus (PVY) and an unrelated virus (potato virus X, PVX). Here, we show that application of PVY dsRNA in potato plants induced accumulation of both small interfering RNAs (siRNAs), a hallmark of RNAi, and some PTI-related gene transcripts such as WRKY29 (WRKY transcription factor 29; molecular marker of PTI), RbohD (respiratory burst oxidase homolog D), EDS5 (enhanced disease susceptibility 5), SERK3 (somatic embryogenesis receptor kinase 3) encoding brassinosteroid-insensitive 1-associated receptor kinase 1 (BAK1), and PR-1b (pathogenesis-related gene 1b). With respect to virus infections, PVY dsRNA suppressed only PVY replication but did not exhibit any effect on PVX infection in spite of the induction of PTI-like effects in the presence of PVX. Given that RNAi-mediated antiviral immunity acts as the major virus resistance mechanism in plants, it can be suggested that dsRNA-based PTI alone may not be strong enough to suppress virus infection. In addition to RNAi- and PTI-inducing activities, we also showed that PVY-specific dsRNA is able to upregulate production of a key enzyme involved in poly(ADP-ribose) metabolism, namely poly(ADP-ribose) glycohydrolase (PARG), which is regarded as a positive regulator of biotic stress responses. These findings offer insights for future development of innovative approaches which could integrate dsRNA-induced RNAi, PTI and modulation of poly(ADP-ribose) metabolism in a co-ordinated manner, to ensure a high level of crop protection.


Assuntos
Potyvirus , Solanum tuberosum , Doenças das Plantas/genética , Poli Adenosina Difosfato Ribose , Potyvirus/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Solanum tuberosum/metabolismo
4.
Viruses ; 13(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064103

RESUMO

Plant-virus interactions are frequently influenced by elevated temperature, which often increases susceptibility to a virus, a scenario described for potato cultivar Chicago infected with potato virus Y (PVY). In contrast, other potato cultivars such as Gala may have similar resistances to PVY at both normal (22 °C) and high (28 °C) temperatures. To elucidate the mechanisms of temperature-independent antivirus resistance in potato, we analysed responses of Gala plants to PVY at different temperatures using proteomic, transcriptional and metabolic approaches. Here we show that in Gala, PVY infection generally upregulates the accumulation of major enzymes associated with the methionine cycle (MTC) independently of temperature, but that temperature (22 °C or 28 °C) may finely regulate what classes accumulate. The different sets of MTC-related enzymes that are up-regulated at 22 °C or 28 °C likely account for the significantly increased accumulation of S-adenosyl methionine (SAM), a key component of MTC which acts as a universal methyl donor in methylation reactions. In contrast to this, we found that in cultivar Chicago, SAM levels were significantly reduced which correlated with the enhanced susceptibility to PVY at high temperature. Collectively, these data suggest that MTC and its major transmethylation function determines resistance or susceptibility to PVY.


Assuntos
Resistência à Doença , Interações Hospedeiro-Patógeno , Metionina/metabolismo , Doenças das Plantas/virologia , Potyvirus/fisiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Cromatografia Líquida , Biologia Computacional/métodos , Temperatura Alta , Redes e Vias Metabólicas , Metilação , Proteínas de Plantas , Espectrometria de Massas em Tandem
5.
Mol Plant Pathol ; 22(1): 77-91, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146443

RESUMO

Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.


Assuntos
Metionina/metabolismo , Doenças das Plantas/virologia , Potyvirus/fisiologia , Solanum tuberosum/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Proteômica , Solanum tuberosum/virologia , Temperatura
6.
Langmuir ; 30(20): 5982-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24784347

RESUMO

We report the synthesis and characterization of amorphous iron oxide nanoparticles from iron salts in aqueous extracts of monocotyledonous (Hordeum vulgare) and dicotyledonous (Rumex acetosa) plants. The nanoparticles were characterized by TEM, absorbance spectroscopy, SAED, EELS, XPS, and DLS methods and were shown to contain mainly iron oxide and iron oxohydroxide. H. vulgare extracts produced amorphous iron oxide nanoparticles with diameters of up to 30 nm. These iron nanoparticles are intrinsically unstable and prone to aggregation; however, we rendered them stable in the long term by addition of 40 mM citrate buffer pH 3.0. In contrast, amorphous iron oxide nanoparticles (diameters of 10-40 nm) produced using R. acetosa extracts are highly stable. The total protein content and antioxidant capacity are similar for both extracts, but pH values differ (H. vulgare pH 5.8 vs R. acetosa pH 3.7). We suggest that the presence of organic acids (such oxalic or citric acids) plays an important role in the stabilization of iron nanoparticles, and that plants containing such constituents may be more efficacious for the green synthesis of iron nanoparticles.


Assuntos
Compostos Férricos/química , Hordeum/química , Nanopartículas/química , Extratos Vegetais/química , Folhas de Planta/química , Rumex/química
7.
J Gen Virol ; 89(Pt 3): 829-838, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18272775

RESUMO

Potato virus A (PVA) particles were purified by centrifugation through a 30 % sucrose cushion and the pellet (P1) was resuspended and sedimented through a 5-40 % sucrose gradient. The gradient separation resulted in two different virus particle populations: a virus fraction (F) that formed a band in the gradient and one that formed a pellet (P2) at the bottom of the gradient. All three preparations contained infectious particles that retained their integrity when visualized by electron microscopy (EM). Western blotting of the P1 particles revealed that the viral RNA helicase, cylindrical inclusion protein (CI), co-purified with virus particles. This result was confirmed with co-immunoprecipitation experiments. CI was detected in P2 particle preparations, whereas F particles were devoid of detectable amounts of CI. ATPase activity was detected in all three preparations with the greatest amount in P2. Results from immunogold-labelling EM experiments suggested that a fraction of the CI present in the preparations was localized to one end of the virion. Atomic force microscopy (AFM) studies showed that P1 and P2 contained intact particles, some of which had a protruding tip structure at one end, whilst F virions were less stable and mostly appeared as beaded structures under the conditions of AFM. The RNA of the particles in F was translated five to ten times more efficiently than RNA from P2 particles when these preparations were subjected to translation in wheat-germ extracts. The results are discussed in the context of a model for CI-mediated functions.


Assuntos
Doenças das Plantas/virologia , Potyvirus/metabolismo , Solanum tuberosum/virologia , Proteínas Virais/metabolismo , Vírion/isolamento & purificação , Vírion/metabolismo , Sequência de Aminoácidos , Centrifugação com Gradiente de Concentração , Imunoprecipitação , Microscopia de Força Atômica , Dados de Sequência Molecular , Mapeamento de Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Virais/química , Vírion/patogenicidade
8.
J Gen Virol ; 86(Pt 10): 2891-2896, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186245

RESUMO

Potato leafroll virus (PLRV) encodes two capsid proteins, major protein (CP) and minor protein (P5), an extended version of the CP produced by occasional translational 'readthrough' of the CP gene. Immunogold electron microscopy showed that PLRV CP is located in the cytoplasm and also localized in the nucleus, preferentially targeting the nucleolus. The nucleolar localization of PLRV CP was also confirmed when it was expressed as a fusion with green fluorescent protein (GFP) via an Agrobacterium vector. Mutational analysis identified a particular sequence within PLRV CP involved in nucleolar targeting [the nucleolar localization signal (NoLS)]. Minor protein P5 also contains the same NoLS, and was targeted to the nucleolus when it was expressed as a fusion with GFP from Agrobacterium. However, P5-GFP lost its nucleolar localization in the presence of replicating PLRV.


Assuntos
Capsídeo/metabolismo , Regulação Viral da Expressão Gênica , Luteovirus/metabolismo , Solanum tuberosum/virologia , Proteínas de Fluorescência Verde , Luteovirus/genética , Rhizobium/virologia
9.
J Gen Virol ; 81(Pt 11): 2791-2795, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11038393

RESUMO

Like typical luteoviruses, Potato leafroll virus (PLRV) cannot be transmitted mechanically by rubbing plants with solutions containing virus particles. However, PLRV was found to be mechanically transmissible from extracts of plants that had been inoculated by viruliferous aphids and then post-inoculated with Pea enation mosaic virus-2 (PEMV-2). Unlike the asymptomatic infections induced by either virus alone, double infections in Nicotiana benthamiana induced necrotic symptoms with some line patterning and vein yellowing. Infective PLRV was recovered from a purified virus preparation by inoculating plants mechanically with purified virus particles mixed with PEMV-2. Similarly, Beet mild yellowing virus was readily transmitted mechanically from mixtures containing PEMV-2. PLRV was also transmissible from mixtures made with extracts of plants infected with Groundnut rosette virus, although less efficiently than from mixtures containing PEMV-2. This novel means of transmitting PLRV, and perhaps other poleroviruses, should prove very useful in a number of fields of luteovirus research.


Assuntos
Luteovirus/fisiologia , Solanum tuberosum/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA