Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 478(1): 1-20, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33305808

RESUMO

Friedreich ataxia (FA) is a neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. In primary cultures of dorsal root ganglia neurons, we showed that frataxin depletion resulted in decreased levels of the mitochondrial calcium exchanger NCLX, neurite degeneration and apoptotic cell death. Here, we describe that frataxin-deficient dorsal root ganglia neurons display low levels of ferredoxin 1 (FDX1), a mitochondrial Fe/S cluster-containing protein that interacts with frataxin and, interestingly, is essential for the synthesis of calcitriol, the active form of vitamin D. We provide data that calcitriol supplementation, used at nanomolar concentrations, is able to reverse the molecular and cellular markers altered in DRG neurons. Calcitriol is able to recover both FDX1 and NCLX levels and restores mitochondrial membrane potential indicating an overall mitochondrial function improvement. Accordingly, reduction in apoptotic markers and neurite degeneration was observed and, as a result, cell survival was also recovered. All these beneficial effects would be explained by the finding that calcitriol is able to increase the mature frataxin levels in both, frataxin-deficient DRG neurons and cardiomyocytes; remarkably, this increase also occurs in lymphoblastoid cell lines derived from FA patients. In conclusion, these results provide molecular bases to consider calcitriol for an easy and affordable therapeutic approach for FA patients.


Assuntos
Calcitriol/farmacologia , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Apoptose/efeitos dos fármacos , Calcitriol/biossíntese , Calcitriol/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Vitamina D/metabolismo , Frataxina
2.
Redox Biol ; 32: 101520, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32279039

RESUMO

Friedreich ataxia (FA) is a cardioneurodegenerative disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Previously, we set up a cardiac cellular model of FA based on neonatal rat cardiac myocytes (NRVM) and lentivirus-mediated frataxin RNA interference. These frataxin-deficient NRVMs presented lipid droplet accumulation, mitochondrial swelling and signs of oxidative stress. Therefore, we decided to explore the presence of protein thiol modifications in this model. With this purpose, reduced glutathione (GSH) levels were measured and the presence of glutathionylated proteins was analyzed. We observed decreased GSH content and increased presence of glutahionylated actin in frataxin-deficient NRVMs. Moreover, the presence of oxidized cysteine residues was investigated using the thiol-reactive fluorescent probe iodoacetamide-Bodipy and 2D-gel electrophoresis. With this approach, we identified two proteins with altered redox status in frataxin-deficient NRVMs: electron transfer flavoprotein-ubiquinone oxidoreductase and dihydrolipoyl dehydrogenase (DLDH). As DLDH is involved in protein-bound lipoic acid redox cycling, we analyzed the redox state of this cofactor and we observed that lipoic acid from pyruvate dehydrogenase was more oxidized in frataxin-deficient cells. Also, by targeted proteomics, we observed a decreased content on the PDH A1 subunit from pyruvate dehydrogenase. Finally, we analyzed the consequences of supplementing frataxin-deficient NRVMs with the PDH cofactors thiamine and lipoic acid, the PDH activator dichloroacetate and the antioxidants N-acetyl cysteine and Tiron. Both dichloroacetate and Tiron were able to partially prevent lipid droplet accumulation in these cells. Overall, these results indicate that frataxin-deficient NRVMs present an altered thiol-redox state which could contribute to the cardiac pathology.


Assuntos
Ataxia de Friedreich , Miócitos Cardíacos , Actinas/metabolismo , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo , Oxirredutases/metabolismo , Piruvatos/metabolismo , Ratos , Compostos de Sulfidrila/metabolismo , Frataxina
3.
J Biol Chem ; 281(18): 12227-32, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16510442

RESUMO

Friedreich ataxia is a human neurodegenerative and myocardial disease caused by decreased expression of the mitochondrial protein frataxin. Proteomic analysis of the mutant yeast model of Friedreich ataxia presented in this paper reveals that these cells display increased amounts of proteins involved in antioxidant defenses, including manganese-superoxide dismutase. This enzyme shows, however, lower activity than that found in wild type cells. Our results indicate that this lack of activity is a consequence of cellular manganese deficiency, because in manganese-supplemented cultures, cell manganese content, and manganese-superoxide dismutase activity were restored. One of the hallmarks of Friedreich ataxia is the decreased activity of iron/sulfur-containing enzymes. The activities of four enzymes of this group (aconitase, glutamate synthase, succinate dehydrogenase, and isopropylmalate dehydratase) have been analyzed for the effects of manganese supplementation. Enzyme activities were recovered by manganese treatment, except for aconitase, for which, a specific interaction with frataxin has been demonstrated previously. Similar results were obtained when cells were grown in iron-limited media suggesting that manganese-superoxide dismutase deficiency is a consequence of iron overload. In conclusion, these data indicate that generalized deficiency of iron-sulfur protein activity could be a consequence of manganese-superoxide dismutase deficiency, and consequently, it opens new strategies for Friedreich ataxia treatment.


Assuntos
Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/deficiência , Manganês/fisiologia , Saccharomyces cerevisiae/metabolismo , Aconitato Hidratase/metabolismo , Antioxidantes/metabolismo , Western Blotting , Eletroforese em Gel Bidimensional , Glutamato Sintase/metabolismo , Humanos , Hidroliases/metabolismo , Proteômica/métodos , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo , Frataxina
4.
Mol Biol Cell ; 13(4): 1109-21, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11950925

RESUMO

Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression of SSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Oxirredutases , Proteínas/metabolismo , Proteínas/fisiologia , Sequência de Aminoácidos , Antifibrinolíticos/farmacologia , Western Blotting , DNA Complementar/metabolismo , Glutarredoxinas , Ferro/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Oxigênio/metabolismo , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Vitamina K 3/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA