Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569959

RESUMO

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Assuntos
Produtos Agrícolas , Monitoramento Ambiental , Praguicidas , Polinização , Animais , Abelhas/fisiologia , Praguicidas/análise , Pólen , Malus , Exposição Ambiental/estatística & dados numéricos
2.
Environ Int ; 157: 106813, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455190

RESUMO

Sulfoximines, the next generation systemic insecticides developed to replace neonicotinoids, have been shown to negatively impact pollinator development and reproduction. However, field-realistic studies on sulfoximines are few and consequences on pollination services unexplored. Moreover, the impacts of other agrochemicals such as fungicides, and their combined effects with insecticides remain poorly investigated. Here, we show in a full factorial semi-field experiment that spray applications of both the product Closer containing the insecticide sulfoxaflor and the product Amistar containing the fungicide azoxystrobin, negatively affected the individual foraging performance of bumblebees (Bombus terrestris). Insecticide exposure further reduced colony growth and size whereas fungicide exposure decreased pollen deposition. We found indications for resource limitation that might have exacerbated pesticide effects on bumblebee colonies. Our work demonstrates that field-realistic exposure to sulfoxaflor can adversely impact bumblebees and that applications before bloom may be insufficient as a mitigation measure to prevent its negative impacts on pollinators. Moreover, fungicide use during bloom could reduce bumblebee foraging performance and pollination services.


Assuntos
Fungicidas Industriais , Inseticidas , Animais , Abelhas , Fungicidas Industriais/toxicidade , Inseticidas/toxicidade , Neonicotinoides , Pólen , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA