Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 15(16): 6463-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25169472

RESUMO

The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Fitoterapia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Ciclo Celular , Proliferação de Células , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Compostos Fitoquímicos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Food Chem Toxicol ; 50(2): 431-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22101062

RESUMO

14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Diterpenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Estrutura Molecular , Reação em Cadeia da Polimerase em Tempo Real
3.
Planta Med ; 77(16): 1782-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21614753

RESUMO

Development of early stage atherosclerosis involves the activation of endothelial cells by oxidized low-density lipoprotein (oxLDL) with subsequent increases in endothelial permeability and expression of adhesion molecules favoring the adherence of monocytes to the endothelium. Cryptotanshinone (CTS), a major compound derived from the Chinese herb Salvia miltiorrhiza, is known for its protective effects against cardiovascular diseases. The aim of this study was to determine whether CTS could prevent the oxLDL-induced early atherosclerotic events. OxLDL (100 µg/mL) was used to increase endothelial permeability and induce monocyte-endothelial cell adhesion in human umbilical vein endothelial cells (HUVECs). Endothelial nitric oxide (NO) concentrations, a permeability-regulating molecule, and expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured. Results show that a) endothelial hyperpermeability was suppressed by 94 % (p < 0.005), b) monocyte adhesion by 105 % (p < 0.01), and c) ICAM-1 and VCAM-1 expressions by 90 % (p < 0.01) and 150 % (p < 0.005), respectively, when CTS was applied. In contrast, CTS increased NO levels by 129 % (p < 0.01) and was found to be noncytotoxic in the concentrations between 1-10 µM. These findings indicate that CTS suppresses an increase in endothelial permeability, likely due to the restoration of NO bioavailability in endothelial cells. They also indicate that CTS may attenuate monocyte adhesion to endothelial cells through the inhibition of adhesion molecules' expression. Thus, CTS may play an important role in the prevention of early or pre-lesional stage of atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Fenantrenos/farmacologia , Salvia miltiorrhiza/química , Aterosclerose/induzido quimicamente , Disponibilidade Biológica , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas LDL/toxicidade , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Óxido Nítrico/farmacocinética , Permeabilidade/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA