Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 15(4): 2131-2143, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305460

RESUMO

The enhancement of bioavailability of food bioactive compounds as dietary supplements can be achieved through the development of targeted delivery systems. This study aimed to develop a novel dual-targeted delivery system for hepatocytes and mitochondria using phacoemulsification self-assembly. The delivery systems were engineered by modifying whey protein isolate (WPI) with galactose oligosaccharide (GOS) and triphenylphosphonium (TPP) to improve AXT transport to the liver and promote hepatic well-being. The dual-targeted nanoparticles (AXT@TPP-WPI-GOS) significantly reduced reactive oxygen species in in vitro experiments, thereby slowing down apoptosis. The AXT@TPP-WPI-GOS exhibited a prominent mitochondrial targeting capacity with a Pearson correlation coefficient of 0.76 at 4 h. In vivo pharmacokinetic experiments revealed that AXT@TPP-WPI-GOS could enhance AXT utilization by 28.18 ± 11.69%. Fluorescence imaging in mice demonstrated significantly higher levels of AXT@TPP-WPI-GOS accumulation in the liver compared to that of free AXT. Therefore, these nanoparticles hold promising applications in nutrient fortification, improving the bioavailability of AXT and supporting hepatic well-being.


Assuntos
Nanopartículas , Compostos Organofosforados , Estresse Oxidativo , Camundongos , Animais , Suplementos Nutricionais , Hepatócitos , Xantofilas
2.
Food Funct ; 15(3): 1323-1339, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205590

RESUMO

The remarkable performance of fucoxanthin (FX) in antioxidant and weight loss applications has generated considerable interest. However, the application of fucoxanthin in the food and pharmaceutical industries is limited due to its highly unsaturated structure. This research aimed to investigate the synergistic mechanism of a unique Pickering emulsion gel stabilized by salmon byproduct protein (SP)-pectin (PE) aggregates and evaluate its ability to enhance the stability and bioavailability of FX. Various analytical techniques, including fluorescence spectroscopy, contact angle testing, turbidity analysis, and cryo-field scanning electron microscopy, were used to demonstrate that electrostatic and hydrophobic interactions between SP and PE contribute to the exceptional stability and wettability of the Pickering emulsion gels. Rheological analysis revealed that increasing the concentration of SP-PEs resulted in shear-thinning behavior, excellent thixotropic recovery performance, higher viscoelasticity, and good thermal stability of the Pickering emulsion gels stabilized by SP-PEs(SEGs). Furthermore, encapsulation of FX in the gels showed protected release under simulated oral and gastric conditions, with the subsequent controlled release in the intestine. Compared to free FX and the control group without PE (SEG-0), SEG-4 exhibited a 1.92-fold and 1.37-fold increase in the total bioavailable fraction of FX, respectively. Notably, during the study, it was observed that SEGs have the potential to serve as cake decoration for 3D printing to replace traditional cream under lower oil phase conditions (50%). These findings suggest that SP-PEs-stabilized Pickering emulsion gels hold promise as carriers for delivering bioactive compounds, offering the potential for various innovative food applications.


Assuntos
Pectinas , Salmão , Xantofilas , Animais , Emulsões/química , Géis/química , Tamanho da Partícula
3.
Food Chem ; 442: 138386, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219568

RESUMO

Nanoparticles (NPs) possessing nanoscale dimensions and remarkable antioxidant activity were synthesized via a green hydrothermal method utilizing Auricularia auricula fermentation broth, referred to as AFNPs. The functional groups on the surface of the AFNPs significantly contributed to the formation of AFNPs-Zn2+. The AFNPs-Zn2+ appeared a zinc retention rate of 40.80 % after gastrointestinal digestion. When compared to typical zinc supplements, AFNPs-Zn2+ did not exhibit visible cytotoxicity or hemolysis. Furthermore, AFNPs-Zn2+ demonstrated the ability to mitigate cell damage resulting from zinc deficiency. In vivo experiments showed that AFNPs-Zn2+ were mainly observed in the stomach, intestine, kidney, and testis after oral administration. In vivo distribution experiments indicated predominant presence of AFNPs-Zn2+ in the stomach, intestine, kidney, and testis following oral administration. This study highlights the potential for Auricularia auricula NPs to serve as the efficient, stable, and safe nanocarriers for Zn2+.


Assuntos
Antioxidantes , Auricularia , Nanopartículas , Antioxidantes/farmacologia , Fermentação , Zinco
4.
Food Funct ; 14(6): 2807-2821, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36866667

RESUMO

Lutein has many physiological functions like antioxidation, anti-cancer, and anti-inflammation, which presents good potential in the development of functional food for eye protection. However, the hydrophobicity and harsh environment factors during digestive absorption process will greatly reduce lutein bioavailability. In this study, Chlorella pyrenoidosa protein-chitosan complex stabilized Pickering emulsions were prepared, and lutein was encapsulated into corn oil droplets to increase its stability and bioavailability in gastrointestinal digestion. The interaction between Chlorella pyrenoidosa protein (CP) and chitosan (CS), and the effect of chitosan concentration on the emulsifying ability of the complex and emulsion stability were studied. With the increase of CS concentration from 0% to 0.8%, the emulsion droplet size obviously decreased, and the emulsion stability and viscosity increased significantly. In particular, when the concentration was 0.8%, the emulsion system was stable at 80 °C and 400 mM sodium chloride. After ultraviolet irradiation for 48 h, the retention rate of lutein encapsulated in Pickering emulsions was 54.33%, which was significantly higher than that (30.67%) of lutein dissolved in corn oil. The retention rate of lutein in Pickering emulsions stabilized by CP-CS complex was significantly higher than that in Pickering emulsions stabilized by CP only and corn oil after heating at 90 °C for 8 h. The results of simulated gastrointestinal digestion showed that the bioavailability of lutein encapsulated in Pickering emulsions stabilized by CP-CS complex reached 44.83%. These results explored the high-value utilization of Chlorella pyrenoidosa and provided new insights into the preparation of Pickering emulsions and the protection for lutein.


Assuntos
Quitosana , Chlorella , Emulsões , Luteína , Óleo de Milho , Tamanho da Partícula
5.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159460

RESUMO

Calcium is considered as an important nutrient element for the maintenance of human health, and food-borne nanoparticles (FNs) produced during food processing may have potential as nanocarriers for calcium ion delivery. Beef is an important source of animal protein that has high protein and low fat content and is rich in a variety of amino acids; thus, beef may be a suitable material for the development of calcium nanocarriers. In this paper, FNs were synthesized from beef by one-step hydrothermal synthesis. The FNs had a spherical shape with a size of about 3.0 nm and emitted a bright blue fluorescence under 365 nm ultraviolet irradiation. The amino nitrogen atom and carboxyl oxygen atom of the functional groups on the surface of the FNs were the main binding sites for the chelation of Ca(II). The size of the FNs-Ca(II) complex was about 4.75 nm, and the specific signal peak of calcium at 3.7 keV was observed in its energy dispersive X-ray spectroscopy spectrum. The viability of cells treated with FNs-Ca(II) was more than 65%, while viability was only 60% after treatment with CaCl2. The results showed that the FNs from beef have great potential in calcium delivery for the development of a calcium supplement.

6.
Food Funct ; 12(18): 8626-8634, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34346455

RESUMO

Food-borne nanoparticles from Undaria pinnatifida (UPFNs) were prepared and successfully applied as nanocarriers for microelement zinc delivery. UPFNs were spherical nanoparticles with average sizes of about 4.07 ± 1.09 nm, which chelated with zinc ions through amino nitrogen and carboxyl oxygen atoms as characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermodynamic analysis revealed that the overall chelation process between UPFNs and zinc ions was a spontaneous enthalpy-driven endothermic reaction. Compared to zinc sulfate, UPFN-Zn2+ showed higher solubility both in phytic acid solution and the process of gastrointestinal digestion. Meanwhile, no obvious cytotoxicity was found in UPFNs and UPFN-Zn2+. Specifically, UPFN-Zn2+ could successfully rescue cell viability, DNA replication activity and restore cell proliferation ability in zinc-deficient cells induced by a specific zinc chelator TPEN. Overall, UPFNs might serve as efficient, stable, and safe nanocarriers for zinc delivery.


Assuntos
Alimentos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Undaria , Zinco/administração & dosagem , Absorção Fisiológica , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Quelantes , Replicação do DNA , Suplementos Nutricionais , Digestão , Humanos , Ácido Fítico/química , Ácido Fítico/farmacologia , Solubilidade , Termodinâmica , Zinco/química
7.
NanoImpact ; 21: 100290, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559779

RESUMO

Fluorescence nanoparticles (FNs) are a type of nano-dots generated during baking process, and their safety on organism is unclear and little is known to their cytotoxicity. In this study, the FNs from instant coffee were purified and characterized. The FNs with an average size about 2.08 nm emitted bright blue fluorescence with lifetime about 2.74 ns. The element and functional groups were analyzed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, respectively. The results indicated that these FNs were internalized in lysosomes and induced apoptosis of normal rat kidney (NRK) and Caco-2 cells. While, the pan-caspase inhibitor, Z-VAD-FMK didn't decrease the rate of apoptosis and cell death of the FNs-treated NRK and Caco-2 cells. These internalized FNs enlarged lysosomes, decreased lysosomal enzyme degradation activity and increased lysosomal pH value. Partial co-localization of receptor-interacting serine-threonine kinase 3 (RIPK3) to lysosomes in FNs-treated cells was observed, and the amount of RIPK1 and RIPK3 increased after treatment with FNs. The results demonstrated that the FNs from instant coffee induced lysosomal membrane permeabilization and initiated necroptosis.


Assuntos
Nanopartículas , Necroptose , Animais , Células CACO-2 , Morte Celular , Café/metabolismo , Fluorescência , Humanos , Lisossomos/metabolismo , Ratos
8.
Food Funct ; 12(1): 191-202, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295907

RESUMO

In this paper, the protective effect of Auricularia auricula (A. auricula) fermentation broth on the liver and stomach of mice with acute alcoholism was studied. The A. auricula fermentation broth was prepared by adding Bacillus subtilis, lactic acid bacteria, and Saccharomyces cerevisiae to A. auricula solution. The changes of physical and chemical indexes during the fermentation of A. auricula were monitored, and the results showed the content of polysaccharides and protein in the two kinds of fermentation broth after the fermentation was completed. Furthermore, the characteristic structures of active substances such as proteins, polysaccharides and phenolics were found in the A. auricula fermentation by structural analysis. Antioxidant activity test results showed that the A. auricula fermentation broth had a strong ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals. Cell experiments showed that the fermentation broth of A. auricula could significantly enhance the activity of NRK cells and protect NRK cells from H2O2 damage. Animal experiments showed that the A. auricula fermentation broth had protective effects on the liver and stomach of mice with acute alcoholism, and significantly reduced the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC) and triglycerides (TG) in serum. These results indicated that the A. auricula fermentation broth had protective effects on the liver and stomach of mice with acute alcoholism, and could be used as a potential functional food to prevent liver and stomach damage caused by acute alcoholism.


Assuntos
Alcoolismo/complicações , Auricularia , Alimentos Fermentados , Hepatopatias/prevenção & controle , Extratos Vegetais/farmacologia , Gastropatias/prevenção & controle , Doença Aguda , Animais , Modelos Animais de Doenças , Fermentação , Fígado/efeitos dos fármacos , Hepatopatias/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Substâncias Protetoras/farmacologia , Estômago/efeitos dos fármacos , Gastropatias/etiologia
9.
J Agric Food Chem ; 68(10): 3163-3170, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32069043

RESUMO

The purpose of this work was to develop a facile strategy based on self-crosslinking between the core and wall materials in the coacervation system for effective procyanidins (PCs) encapsulation. The coacervates were constructed through the interaction of bioactive PCs, gelatin, and sodium alginate, followed by forming cationic bridge of sodium alginate-calcium ions to improve the stability of PCs. When the concentration of PCs and calcium ions were 6.25 and 0.24 mg/mL, respectively, the PC-loaded coacervates showed spherical shape with a size about 150 nm, and the microcapsulation efficiency and yield was 81.19 ± 1.47 and 87.86 ± 2.67%, respectively. The photothermal stability of PCs was effectively improved by embedding them in coacervates. The decrease of mitochondrial membrane potential in PC-12 cells induced by H2O2 was significantly inhibited by PC coacervates, demonstrating an improved protection effect of PCs after being encapsulated in coacervates.


Assuntos
Biflavonoides/química , Quelantes de Cálcio/química , Cálcio/química , Catequina/química , Extratos Vegetais/química , Proantocianidinas/química , Animais , Reagentes de Ligações Cruzadas/química , Estabilidade de Medicamentos , Íons/química , Células PC12 , Ratos , Sementes/química , Vitis
10.
Food Funct ; 10(10): 6711-6719, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31560353

RESUMO

Food-borne nanoparticles (FNs) produced during thermal processing of food may have potential as nanocarriers for Fe(ii) supplements. In this paper, the FNs in beef patties roasted for different times (15, 30, and 45 minutes) and the binding between FNs and ferrous ions were studied. The size of FNs decreased from 7.5 to 3.0 nm with the increase of baking time, and the FNs emitted bright blue fluorescence under ultraviolet light irradiation. The combination of FNs with ferrous ions was by means of the amino, hydroxyl and carboxyl functional groups on the particles. Cell viability study showed that the Fe(ii)-FNs increased the apoptotic rate, but significantly decreased the necrosis rate, which led to an increase in the number of living cells. In addition, the Fe(ii)-FNs can easily enter the Caco-2 cytoplasm, but not the cellular nucleus. The FNs derived from beef patties with an ultra-small size, high water solubility and plenty of functional groups might be good candidates as nanocarriers for Fe(ii) delivery.


Assuntos
Ferro/metabolismo , Produtos da Carne/análise , Nanopartículas/química , Carne Vermelha/análise , Animais , Células CACO-2 , Bovinos , Humanos , Quelantes de Ferro/química , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Solubilidade
11.
J Agric Food Chem ; 67(25): 6995-7004, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194541

RESUMO

Food-borne nanoparticles (FNs) may be used as nanocarriers for metal ion chelation in micronutrient supplements. In this paper, the preparation and characterization of hydrophilic FNs were reported from beef broth cooked with a pressure cooker at 117 °C for different periods (30, 50, and 70 min) and their potential application as nanocarriers for zinc was investigated. The broth FNs are quasi-spherical with good water solubility and ultrasmall size, which can emit a strong sapphire color under 365 nm ultraviolet irradiation. X-ray photoelectron spectroscopy (XPS) analysis showed that there are carboxyl, amino, and hydroxyl groups on the FNs, which are useful for Zn(II) chelation. The vibration band of C═O at 1688 cm-1 in the infrared spectrum of FNs shifted to 1718 cm-1 after binding with Zn(II) ions, suggesting the participation of the carbonyl group in Zn(II) ion chelation. The appearance of Zn2p XPS peaks, at 1021.6 and 1045 eV for Zn(II)-FNs, clearly demonstrated the formation of Zn-O between the FNs and zinc ions. Biodistribution of FNs and the Zn(II)-FN complex in normal rat kidney cells demonstrated that they could easily enter normal rat kidney cells. A downfield was found for the signals of Zn(II)-FNs in 1H nuclear magnetic resonance spectroscopy and strongly suggested the binding of Zn(II) ions to FNs through carboxylic acid, hydroxyl, and amine groups. In addition, no obvious cytotoxicity was found for Zn(II)-FNs compared to zinc (ZnSO4) and commercial zinc gluconate. The results revealed that the FNs from beef broth may have a potential as nanocarriers for zinc chelation.


Assuntos
Portadores de Fármacos/química , Produtos da Carne/análise , Nanopartículas/química , Zinco/química , Animais , Bovinos , Linhagem Celular , Quelantes/química , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Ratos , Solubilidade , Distribuição Tecidual
12.
Food Funct ; 10(5): 2408-2416, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30957811

RESUMO

Food-borne nanoparticles that are generated during the thermal processing of various consumed foods are of great concern due to their unique properties. In this study, the presence of fluorescent nanoparticles (FNPs) in pizza, their biodistribution and cytotoxicity were investigated. The spherical FNPs have a diameter of about 3.33 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis revealed that they contained 68.21% C, 27.44% O, 2.75% N and 1.60% S, and the functional groups on their surface included -OH, -COOH, C[double bond, length as m-dash]C, -NH2 and C[double bond, length as m-dash]O. In vitro and in vivo biodistribution of pizza FNPs was evaluated using normal rat kidney (NRK) cells, onion epidermal cells, Caenorhabditis elegans and mice. The fluorescence microscopy images clearly indicate that the pizza FNPs appear to be localized within the cytoplasm. However, the FNPs remained restricted to the extracellular space of the onion epithelium and did not enter the onion cell cytoplasm because of the cell wall. The FNPs were swallowed by the Caenorhabditis elegans worms when exposed to food OP50 and distributed within the pharynx, intestine and anus. Obvious fluorescence of the FNPs in the stomach, intestine, liver, lung and kidney was observed for the FNPs in mouse organs, but not the brain, heart, and spleen. Furthermore, the produced FNPs were found to cause cell cycle arrest at the G0/G1 phase in NRK cells, and resulted in cell apoptosis at high doses. The outcome of this research offers an important insight into the nature of thermal processing-induced nanoparticles and their in vivo and in vitro biological effects.


Assuntos
Nanopartículas/metabolismo , Nanopartículas/toxicidade , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/metabolismo , Animais , Caenorhabditis elegans , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Culinária , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Fluorescência , Análise de Alimentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Cebolas , Tamanho da Partícula , Ratos , Distribuição Tecidual
13.
Methods ; 168: 84-93, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953758

RESUMO

This study aims to obtain water-soluble fluorescent carbon dots (C-dots) from low-value metabolites through a simple, economical, one-step synthetic route. The urine C-dots (UCDs) and hydrothermally treated urine C-dots (HUCDs) were obtained, respectively, using straightforward Sephadex filtration method from human adults and hydrothermal reaction method. The UCDs and HUCDs emit fluorescence upon being excited with ultraviolet light with a quantum yield of 4.8% and 17.8%, respectively. TEM analysis revealed that UCDs and HUCDs had an average size of 2.5 nm and 5.5 nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed the UCDs and HUCDs were mainly composed of carbon, oxygen and nitrogen. Fourier-transform infrared (FTIR) spectroscopy demonstrated the presence of functional groups, such as amino, hydroxyl, carboxylate and carbonyl groups onto the C-dots. The UCDs and HUCDs can be directly used for in vivo and in vitro imaging in Hela cells, Caenorhabditis elegans, onion epidermal cells and bean sprouts. The cytotoxicity study revealed that the UCDs and HUCDs were not toxic to normal rat kidney (NKR) cells with good biocompatibility. The results revealed that the C-dots derived from urine have good biocompatibility, strong fluorescence and may have potential to be a safe fluorescent probe for bio-imaging.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/farmacologia , Pontos Quânticos/química , Urina/química , Animais , Caenorhabditis elegans , Carbono , Escherichia coli/metabolismo , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Rim/metabolismo , Microscopia Eletrônica de Transmissão , Nitrogênio , Cebolas , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta , Urinálise
14.
Biomacromolecules ; 16(7): 2080-90, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26075349

RESUMO

Nanocarriers play an important role in improving the photo- and thermal-stability of photosensitizers to gain better pharmacokinetics behavior in tumor photothermal therapy. Herein, PEGylated chitosan (CG-PEG; PEG: polyethylene glycol) nanoparticles with ultrasmall size (∼5 nm) were prepared through a water-in-oil reverse microemulsion method using genipin as a cross-linker. Particle size and zeta-potential can be tuned by varying the molar ratio between chitosan amino groups and genipin. CG-PEG-ICG (ICG: indocyanine green) nanoparticles were fabricated by adding ICG to CG-PEG aqueous solution through a self-assembly method via electrostatic interaction. The resultant CG-PEG-ICG nanoparticles exhibited improved photo- and thermal-stability, good biocompatibility, and low toxicity. When irradiated with a laser, the cells incubated with CG-PEG-ICG nanoparticles showed very low cell viability (15%), indicating the CG-PEG-ICG nanoparticles possess high in vitro photothermal toxicity. Moreover, the CG-PEG nanocarriers can significantly alter the biodistribution and prolong the retention time of ICG in the mice body after intravenous injection. In vivo photothermal study of tumors injected with CG-PEG-ICG nanoparticles containing ICG at a concentration greater than 100 µg·mL(-1) (100 µL) induced irreversible tissue damage. The growth of U87 tumors was dramatically inhibited by CG-PEG-ICG nanoparticles, demonstrating that the CG-PEG nanoparticles may act as potential ICG nanocarriers for effective in vivo tumor photothermal therapy.


Assuntos
Portadores de Fármacos/síntese química , Nanopartículas/química , Neoplasias Experimentais/radioterapia , Fármacos Fotossensibilizantes/síntese química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Quitosana , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Iridoides , Terapia com Luz de Baixa Intensidade , Camundongos , Tamanho da Partícula , Fármacos Fotossensibilizantes/farmacologia
15.
Talanta ; 127: 68-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913858

RESUMO

The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications.


Assuntos
Carbono/análise , Café/química , Nanopartículas/análise , Animais , Células CHO , Carbono/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Humanos , Luminescência , Microscopia Eletrônica de Transmissão , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Imagem Óptica , Poecilia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA