Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 252: 126512, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32220716

RESUMO

Hydroponic experiments with different cadmium (Cd) concentrations were conducted to explore the impacts of nutrient allocation on the Cd enrichment of Bermuda grass. The results demonstrated with the Cd concentration increase, the accumulation of nitrogen (N), phosphorus (P) and potassium (K) in roots, stems and leaves increased first and then decreased, while the accumulation of Cd had no significant difference. The biomass and N, P and K accumulation of CD1 and CD2 were significantly different from those of CD3 and CD4, but there was no significant difference in Cd accumulation. The root N, P and K distribution ratio of CD4 increased by 47.9%, 114.3% and 64.3% compared with those of CD2 treatment, the values of stem decreased by 29.4%, 22.4% and 17.2%, and the values of leaves increased by 15.8%, 19.8% and 23.6% respectively. The K ratio of root and leaf increased and that of stem decreased. Cd reduced N and K distribution ratio of stem and increased N and K distribution ratio of root and leaf. Pearson correlation analysis showed that the accumulation of N, P and K in stems was positively correlated with the accumulation of Cd in stems, and the accumulation of N, P and K in roots, stems and leaves were positively correlated with the Cd accumulation in leaves. Bermuda grass can schedule the nutrient allocation to adapt to the Cd absorption and enrichment in different organs under different Cd concentrations. In conclusion, nutrient allocation might affect the Cd accumulation of Bermuda grass.


Assuntos
Cádmio/metabolismo , Cynodon/metabolismo , Poluentes do Solo/metabolismo , Biomassa , Hidroponia , Minerais , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta , Raízes de Plantas , Potássio
2.
Chemosphere ; 221: 342-348, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30641375

RESUMO

There have been no studies demonstrating the correlation between soil nutrient heterogeneity and cadmium (Cd) absorption of Bermudagrass. In this study, a pot experiment was carried out to study the correlation between them. The purpose is to find soil nutrient factors which are conducive to improving the Cd absorption and translocation. The eighth group had the largest total number of surviving plants, the highest Fv/Fo value (3.24) and the best growth characteristics. The fifth group had the lowest total number of surviving plants, Fv/Fo (2.47) and the worst growth. The Cd content of the fifth group (36.11 mg kg-1) was close to the eighth group (35.72 mg kg-1), but the two groups had significant differences in plant height, stem node length and stem node number (P < 0.05). The eighth group showed the highest contents of nitrate nitrogen (NO3--N), available potassium and urease activity. The fifth group showed the lowest NO3--N content, but the highest ammonium nitrogen (NH4+-N) and available phosphorus content. There was significant difference of the Cd bioconcentration factors (BCF) and translocation factor (TCF) between the fifth and the eighth group although they had the similar total soil Cd content (P < 0.05). The fifth group had the highest BCF and TCF. RDA analysis indicated the BCF and TCF were positively correlated with soil NH4+-N and available phosphorus and negatively correlated with soil NO3--N. The results demonstrated that soil NH4+-N and available phosphorus were important soil ecological factors to enhance Cd absorption and translocation of bermudagrass.


Assuntos
Cádmio/metabolismo , Cynodon/metabolismo , Nutrientes , Solo/química , Compostos de Amônio/análise , Cádmio/farmacocinética , Cynodon/crescimento & desenvolvimento , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/farmacocinética
3.
Environ Sci Pollut Res Int ; 20(10): 7433-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23657718

RESUMO

Revegetation in the water-level-fluctuation zone (WLFZ) could stabilize riverbanks, maintain local biodiversity, and improve reservoir water quality in the Three Gorges Reservoir Region (TGRR). However, submergence and cadmium (Cd) may seriously affect the survival of transplantations. Bermuda grass (Cynodon dactylon) is a stoloniferous and rhizomatous prostrate weed displaying high growth rate. A previous study has demonstrated that Bermuda grass can tolerate deep submergence and Cd stress, respectively. In the present study, we further analyzed physiological responses of Bermuda grass induced by Cd-and-submergence stress. The ultimate goal was to explore the possibility of using Bermuda grass for revegetation in the WLFZ of China's TGRR and other riparian areas. The Cd-and-submergence-treated plants had higher malondialdehyde contents and peroxidase than control, and both increased with the Cd concentration increase. All treated plants catalase activity increased with the experimental duration increases, and their superoxide dismutase also gradually increased with the Cd concentration from 1 day to 15 days. Total biomass of the same Cd-and-submergence plants increased along the experimental duration as well. Plants exposed to Cd-and-submergence stress showed shoot elongation. The heights of all treated plants were taller than those of the control. Leaf chlorophyll contents, maximum leaf length, and soluble sugars contents of all the Cd-and-submergence-treated plants were more than those of the untreated control. Although Cd inhibits plants growth, decreases chlorophyll and biomass content, and with the submergence induced the leaf and shoot elongation, more part of the Cd-and-submergence stress plants appeared in the air, exhibited fast growth with maintenance of leaf color, which guaranteed the plants' photosynthesis, and ensured the total biomass and carbohydrate sustainability, further promoting Cd-and-submergence tolerance. The results imply that the negative effects of cadmium on Bermuda grass growth might be offset by submergence.


Assuntos
Cádmio/toxicidade , Cynodon/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biomassa , China , Clorofila/metabolismo , Cynodon/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA