Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theranostics ; 12(7): 3196-3216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547748

RESUMO

Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1α and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1α/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Apoptose/genética , Isquemia Encefálica/metabolismo , Metabolismo Energético , Fosfolipases A2 do Grupo IV/metabolismo , Camundongos , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
Phenomics ; 2(4): 242-253, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939787

RESUMO

Exposures to copper have become a health concern. We aim to explore the broad clinical effects of blood copper concentrations. A total of 376,346 Caucasian subjects were enrolled. We performed a Mendelian randomization and phenome-wide association study (MR-PheWAS) to evaluate the causal association between copper and a wide range of outcomes in UK Biobank, and we constructed a protein-protein interaction network. We found association between blood copper concentrations and five diseases in the overall population and nine diseases in male. MR analysis implicated a causal role of blood copper in five diseases (overall population), including prostate cancer (OR = 0.87, 95% CI 0.77-0.98), malignant and unknown neoplasms of the brain and nervous system (OR = 0.58, 95% CI 0.38-0.89), and hypertension (OR = 0.94, 95% CI 0.90-0.98), essential hypertension (OR = 0.94, 95% CI 0.90-0.98) and cancer of brain and nervous system (OR = 0.63, 95% CI 0.41-0.98). For male, except for dysphagia being newly associated with blood copper (OR = 1.39, 95% CI 1.18-1.63), other MR results were consistent with the overall population. In addition, the PPI network showed possible relationship between blood copper and four outcomes, namely brain cancer, prostate cancer, hypertension, and dysphagia. Blood copper may have causal association with prostate cancer, malignant and unknown neoplasms of the brain and nervous system, hypertension, and dysphagia. Considering that copper is modifiable, exploring whether regulation of copper levels can be used to optimize health outcomes might have public health importance. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00052-3.

3.
Sci Rep ; 4: 5545, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24986670

RESUMO

Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m(2) g(-1) is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA(+), diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 µF cm(-2) and high energy density of 10/39 Wh kg(-1) at power of 52/286 kW kg(-1) in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.


Assuntos
Capacitância Elétrica , Fontes de Energia Elétrica , Nanopartículas/química , Nozes/química , Pistacia/química , Extratos Vegetais/química , Carbono/química , Eletrônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA