Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105599, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159853

RESUMO

It is known that the recommended dietary allowance of selenium (Se) is dangerously close to its tolerable upper intake level. Se is detoxified and excreted in urine as trimethylselenonium ion (TMSe) when the amount ingested exceeds the nutritional level. Recently, we demonstrated that the production of TMSe requires two methyltransferases: thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). In this study, we investigated the substrate recognition mechanisms of INMT and TPMT in the Se-methylation reaction. Examination of the Se-methyltransferase activities of two paralogs of INMT, namely, nicotinamide N-methyltransferase and phenylethanolamine N-methyltransferase, revealed that only INMT exhibited Se-methyltransferase activity. Consistently, molecular dynamics simulations demonstrated that dimethylselenide was preferentially associated with the active center of INMT. Using the fragment molecular orbital method, we identified hydrophobic residues involved in the binding of dimethylselenide to the active center of INMT. The INMT-L164R mutation resulted in a deficiency in Se- and N-methyltransferase activities. Similarly, TPMT-R152, which occupies the same position as INMT-L164, played a crucial role in the Se-methyltransferase activity of TPMT. Our findings suggest that TPMT recognizes negatively charged substrates, whereas INMT recognizes electrically neutral substrates in the hydrophobic active center embedded within the protein. These observations explain the sequential requirement of the two methyltransferases in producing TMSe.


Assuntos
Metiltransferases , Selênio , Metiltransferases/genética , Metiltransferases/metabolismo , Selênio/metabolismo , Metilação , Ativação Enzimática , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Humanos
2.
Biochem Biophys Rep ; 29: 101223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146136

RESUMO

Selenium is a chalcogen element that is essential in animals, but is highly toxic when ingested above the nutritional requirement. Selenite is used as a supplement in patients receiving total parenteral nutrition. However, the therapeutic and toxic doses of selenite are separated by a narrow range. This ambivalent character of selenite implies the presence of cellular mechanisms that precisely control selenite homeostasis. Here, we investigated mechanisms that determine cellular susceptibility to selenite exposure. The resistance to selenite exposure was significantly different among cell lines. We determined the expression levels of TPMT (thiopurine S-methyltransferase) and SLC4A1 (solute carrier family 4 member 1), which encode selenium methyltransferase and selenite transporter, respectively. We also examined the effect of inhibition of Band 3 protein activity, which is encoded by SLC4A1, on the cellular sensitivity to selenite. The data suggest that the expression level of SLC4A1 is the determinant of cellular sensitivity to selenite.

3.
Chem Res Toxicol ; 34(12): 2471-2484, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34841876

RESUMO

It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.


Assuntos
Mercúrio/efeitos adversos , Nanopartículas/efeitos adversos , Selênio/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Mercúrio/metabolismo , Nanopartículas/metabolismo , Selênio/metabolismo , Células Tumorais Cultivadas
4.
Chem Res Toxicol ; 33(9): 2467-2474, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32786394

RESUMO

Selenium (Se) is an essential trace element in animals; however, the element can become highly toxic in excess amounts beyond the nutritional level. Although Se is mainly excreted into urine as a selenosugar within the nutritional level, excess amounts of Se are transformed as an alternative urinary metabolite, trimethylselenonium ion (TMSe). Se methylation appears to be an important metabolic process for the detoxification of excess Se; however, the biochemical mechanisms underlying the Se methylation have not been elucidated. In this study, we evaluated biochemical characteristics of two human methyltransferases for Se methylation, thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). The first methylation of Se, i.e., a nonmethylated to a monomethylated form, was specifically driven by TPMT, and INMT specifically mediated the third methylation, i.e., dimethylated to trimethylated form. The second methylation, i.e., a monomethylated to dimethylated form, was driven by either TPMT or INMT. Exogenous expression of TPMT, but not INMT, ameliorated the cytotoxicity of inorganic nonmethylated selenium salt, suggesting that only TPMT gave the cellular resistance against selenite exposure. TPMT was ubiquitously expressed in most mouse tissues and preferably expressed in the liver and kidneys, while INMT was specifically expressed in the lung and supplementally expressed in the liver and kidneys. Our results revealed that both TPMT and INMT cooperatively contributed to the TMSe production, enabling urinary excretion of Se and maintenance of homeostasis of this essential yet highly toxic trace element. Thus, TPMT and INMT can be recognized as selenium methyltransferases as a synonym.


Assuntos
Metiltransferases/metabolismo , Compostos de Selênio/metabolismo , Células Cultivadas , Cromatografia Líquida , Células HEK293 , Humanos , Compostos de Selênio/química , Compostos de Selênio/urina , Espectrometria de Massas por Ionização por Electrospray
5.
J Trace Elem Med Biol ; 62: 126628, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32739829

RESUMO

BACKGROUND: Biosynthesis of Te nanoparticles may occur in higher plants exposed to Te, as reported on microorganisms. However, unambiguous observations of the biogenic nanoparticles (BgNPs) of Te in plants are lacking. Hence, in this study, we investigated the formation of insoluble BgNPs of Te in garlic (Allium sativum) as a model plant. METHOD: We performed elemental analysis based on inductively coupled plasma-mass spectrometry (ICP-MS) technique, and obtained Te concentration and distribution in various parts of garlic. In addition, insoluble Te particles were detected by fast time-resolved ICP-MS. Direct observation of the insoluble Te particle was also conducted by scanning electron microscope (SEM) and transmission electron microscope (TEM). RESULTS: A part of the roots and clove from Te-exposed garlic showed black coloration. Te concentrations in the black-colored parts were significantly increased compared with the non-colored parts. Transient signals of Te unique to nanoparticles were detected from the insoluble fractions of the black-colored parts. Finally, rod-shaped biogenic Te nanoparticles consisting of highly crystalline elemental Te was observed by SEM and TEM. CONCLUSION: Our data provide new insights to the metabolic pathway of Te in higher plants for the formation of insoluble biogenic nanoparticles, which is extremely important for the detoxification of Te.


Assuntos
Alho/química , Espectrometria de Massas/métodos , Nanopartículas/química , Telúrio/análise , Raízes de Plantas/química , Telúrio/química
6.
Chembiochem ; 21(22): 3266-3272, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32662172

RESUMO

The elemental composition of a single yeast, green alga, or red blood cell (RBC) was precisely determined by using inductively coupled plasma-mass spectrometry (ICP-MS) operating in fast time-resolved analysis (TRA) mode. The technique is known as single-cell (SC)-ICP-MS. Phosphorus, sulfur, magnesium, zinc, and iron were detected in the three types of cell. The elemental composition of yeast and green alga obtained by SC-ICP-MS was consistent with results obtained from conventional ICP-MS measurements following acid digestion of the cells. Slight differences were found in the measured values between SC-ICP-MS and the conventional ICP-MS results for RBC. However, the SC-ICP-MS results for S and Fe in RBC were closer to the estimated values for these elements that were calculated from the level of hemoglobin in RBCs. The data suggest that SC-ICP-MS is suitable for the analysis of various cell types, namely, fungus, plant, and animal cells.


Assuntos
Ferro/análise , Magnésio/análise , Fósforo/análise , Análise de Célula Única , Enxofre/análise , Zinco/análise , Animais , Células Cultivadas , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/citologia , Eritrócitos/química , Eritrócitos/citologia , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Fatores de Tempo
7.
Chem Pharm Bull (Tokyo) ; 58(3): 394-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20190448

RESUMO

Takuran is a traditional herbal medicine that is produced from the herbal plant Lycopus lucidas TURCZ. (Lamiaceae). Takuran is used as a treatment for diseases in women. From Takuran, four new phenylpropanoids along with 18 known compounds were isolated, and their structures were elucidated by spectroscopic analyses. Five phenylpropanoids isolated from the plant showed hyaluronidase inhibitory activity comparable to that of rosmarinic acid.


Assuntos
Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Lamiaceae/química , Fenóis/química , Cinamatos/química , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , Estrutura Molecular , Fenóis/isolamento & purificação , Fenóis/farmacologia , Especificidade da Espécie , Estereoisomerismo , Relação Estrutura-Atividade , Ácido Rosmarínico
8.
J Anesth ; 23(4): 616-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19921380

RESUMO

This retrospective study aimed to determine whether prophylactic transcutaneous pacing is required for patients with complete right bundle-branch block (CRBBB) and axis deviation (AD), so-called bifascicular block, when surgical procedures are performed under general or local anesthesia. The authors reviewed 34 063 anesthesia cases that took place at Nara Medical University Hospital during a 10-year period (1996-2005). The anesthesia records of all identified patients having CRBBB or bifascicular block were retrospectively reviewed and the incidence of block progression to complete heart block or bradycardia requiring temporary transcutaneous pacing served as the primary endpoint. As a secondary endpoint, the incidence of block progression to complete heart block or bradycardia requiring only medical treatment was checked. Seventy of the 34 063 patients (0.2%) had CRBBB with AD. Only 1 patient with CRBBB with left AD, who underwent on-pump aorto-coronary bypass grafting surgery, developed complete heart block at the resumption of heartbeat. None of the other 69 patients, except for this cardiac case, developed complete heart block during surgery. Based on this analysis of 70 cases, prophylactic gel-pad electrode application in patients with CRBBB and AD does not appear to be necessary during surgical procedures.


Assuntos
Anestesia , Bloqueio de Ramo/terapia , Estimulação Cardíaca Artificial/métodos , Eletrodos , Adolescente , Adulto , Idoso , Anestesia Geral , Anestesia Local , Bradicardia/prevenção & controle , Pré-Escolar , Ponte de Artéria Coronária , Eletrocardiografia , Feminino , Géis , Hemodinâmica/fisiologia , Hospitais Universitários , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA