Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tradit Chin Med ; 41(5): 747-752, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34708633

RESUMO

OBJECTIVE: To evaluate the effects of Dajizhi (Euphorbium) on selenite-induced cataracts. METHODS: Wistar rat pups were divided into 9 groups. Rats in group 1 were subcutaneously injected with saline, and rats in the other groups were injected with sodium-selenite. Every right eye was treated with 5 µL eye drops 3 times per day, and the left eye received no treatment. The eyes of rats in group 3 were treated with pirenoxine; rats in groups 4, 5, 6, 7, 8 and 9 were respectively treated with Dajizhi (Euphorbium) (25 mg/mL), Dajizhi (Euphorbium) (5 mg/mL), Dajizhi (Euphorbium) methanol extract (25 mg/mL), Dajizhi (Euphorbium) methanol extract (5 mg/mL), euphol (25 mg/mL), euphol (5 mg/mL). Cataracts were observed by a slit lamp before and after treatment. Electroretinograms were acquired at set intervals. The morphological changes of the rat eyes were observed in vitro, and the levels of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in the lenses and aqueous humour were estimated at set intervals. RESULTS: Slit lamp examination showed decreased degrees of cataracts after administration of the different treatments. Morphological comparison showed that Dajizhi (Euphorbium) can reduce the turbidity of the lenses, meaning that Dajizhi (Euphorbium) has the anti-cataract effects. Low-concentration of Dajizhi (Euphorbium), its methanol extract and euphol treatment prevented the b-wave amplitudes of the electroretinograms from falling. Euphorbium treatment significantly restored GSH-Px and SOD levels in the lenses and aqueous humour, especially after 10 and 25 d of administration. Euphorbium may help lenses fight oxidative stress caused by selenite. CONCLUSION: The administration of Dajizhi (Euphorbium) can inhibit selenite-induced cataracts.


Assuntos
Catarata , Cristalino , Animais , Antioxidantes/farmacologia , Catarata/induzido quimicamente , Catarata/tratamento farmacológico , Catarata/prevenção & controle , Glutationa/metabolismo , Cristalino/metabolismo , Malondialdeído , Soluções Oftálmicas , Estresse Oxidativo , Ratos , Ratos Wistar , Ácido Selenioso/efeitos adversos , Superóxido Dismutase/metabolismo
2.
Oncotarget ; 6(27): 24148-62, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26160839

RESUMO

The Akt/mTORC1 pathway plays a central role in the activation of Warburg effect in cancer. Here, we present for the first time that halofuginone (HF) treatment inhibits colorectal cancer (CRC) growth both in vitro and in vivo through regulation of Akt/mTORC1 signaling pathway. Halofuginone treatment of human CRC cells inhibited cell proliferation, induced the generation of reactive oxygen species and apoptosis. As expected, reduced level of NADPH was also observed, at least in part due to inactivation of glucose-6-phosphate dehydrogenase in pentose phosphate pathway upon HF treatment. Given these findings, we further investigated metabolic regulation of HF through Akt/mTORC1-mediated aerobic glycolysis and found that HF downregulated Akt/mTORC1 signaling pathway. Moreover, metabolomics delineated the slower rates in both glycolytic flux and glucose-derived tricarboxylic acid cycle flux. Meanwhile, both glucose transporter GLUT1 and hexokinase-2 in glycolysis were suppressed in CRC cells upon HF treatment, to support our notion that HF regulates Akt/mTORC1 signaling pathway to dampen glucose uptake and glycolysis in CRC cells. Furthermore, HF retarded tumor growth in nude mice inoculated with HCT116 cells, showing the anticancer activity of HF through metabolic regulation of Akt/mTORC1 in CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Glucose/metabolismo , Complexos Multiproteicos/metabolismo , Piperidinas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinonas/química , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/química , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Células HCT116 , Hexoquinase/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Lipídeos/química , Alvo Mecanístico do Complexo 1 de Rapamicina , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Pentose Fosfato , Inibidores da Síntese de Proteínas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Arch Oral Biol ; 58(12): 1769-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24200303

RESUMO

OBJECTIVES: Grape seed extract (GSE) is known to have a positive effect on the demineralization and/or remineralization of artificial root caries lesions. The present study aimed to investigate whether biomodification of caries-like acid-etched demineralized dentine, using proanthocyanidins-rich GSE, would promote its remineralization potential. DESIGNS: Dentine specimens were acid-etched for 30s, then biomodified using proanthocyanidin-based preconditioners (at different concentrations and pH values) for 2min, followed by a 15-day artificial remineralization regimen. They were subsequently subjected to microhardness measurements, micromorphological evaluation and X-ray diffraction analyses. Stability of the preconditioners was also analyzed, spectrophotometrically. RESULTS: A concentration-dependent increase was observed in the microhardness of the specimens that were biomodified using GSE preconditioners, without pH adjustment. Field emission scanning electron microscopy revealed greater mineral deposition on their surfaces, which was further identified mainly as hydroxylapatite. The absorbances of preconditioner dilutions at pH 7.4 and pH 10.0 decreased at the two typical polyphenol bands. CONCLUSIONS: Transient GSE biomodification promoted remineralization on the surface of demineralized dentine, and this process was influenced by the concentration and pH value of the preconditioner. GSE preconditioner at a concentration of 15%, without pH adjustment, presented with the best results, and this may be attributed to its high polyphenolic content.


Assuntos
Dentina/patologia , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Cárie Radicular/patologia , Remineralização Dentária/métodos , Dentina/efeitos dos fármacos , Durapatita , Extrato de Sementes de Uva/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Fitoterapia , Proantocianidinas/uso terapêutico , Cárie Radicular/tratamento farmacológico , Sementes , Espectrofotometria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA