Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Breed ; 44(3): 22, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435473

RESUMO

Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR). Our prior research study identified a variant, OsCERK1DY, derived from Dongxiang wild-type rice, which notably enhanced AMS efficiency in the rice cultivar "ZZ35." This variant represents a promising gene for enhancing yield and nutrient use efficiency in rice breeding. In this study, we conducted a comparative analysis of biomass, crop growth characteristics, yield attributes, and nutrient absorption at varying soil nitrogen levels in the rice cultivar "ZZ35" and its chromosome single-segment substitution line, "GJDN1." In the field, GJDN1 exhibited a higher AM colonization level in its roots compared with ZZ35. Notably, GJDN1 displayed significantly higher effective panicle numbers and seed-setting rates than ZZ35. Moreover, the yield of GJDN1 with 75% nitrogen was 14.27% greater than the maximum yield achieved using ZZ35. At equivalent nitrogen levels, GJDN1 consistently outperformed ZZ35 in chlorophyll (Chl) content, dry matter accumulation, major nutrient element accumulation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N partial factor productivity (NPFP). The performance of OsCERK1DY overexpression lines corroborated these findings. These results support a model wherein the heightened level of AMS mediated by OsCERK1DY contributes to increased nitrogen, phosphorus, and potassium accumulation. This enhancement in nutrient utilization promotes higher fertilizer efficiency, dry matter accumulation, and ultimately, rice yield. Consequently, the OsCERK1DY gene emerges as a robust candidate for improving yield, reducing fertilizer usage, and facilitating a transition towards greener, lower-carbon agriculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01459-8.

2.
Environ Sci Technol ; 47(12): 6440-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23697787

RESUMO

A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.


Assuntos
Biodegradação Ambiental , Óleos de Plantas/química , Urânio/química , Verduras/química , Elétrons , Ferro/química , Manganês/química , Metano/química
3.
Environ Sci Technol ; 47(11): 5787-93, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23641798

RESUMO

Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)3 and basaluminite precipitation reactions and a cation exchange selectivity coefficient K(Na\Al) of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH < 5 and with liebigite (Ca2UO2(CO3)3·10H2O) precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments.


Assuntos
Alumínio/análise , Sedimentos Geológicos/análise , Urânio/análise , Poluentes Radioativos da Água/química , Adsorção , Alumínio/química , Cálcio/química , Dióxido de Carbono/química , Carbonatos/química , Técnicas de Química Analítica/métodos , Sedimentos Geológicos/química , Água Subterrânea/análise , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Magnésio/química , Manganês/química , Modelos Químicos , Solubilidade , Tennessee , Urânio/química , Poluentes Radioativos da Água/análise
4.
Environ Sci Technol ; 47(7): 3218-25, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23438796

RESUMO

We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.


Assuntos
Elétrons , Emulsões/metabolismo , Modelos Biológicos , Óleos de Plantas/metabolismo , Urânio/isolamento & purificação , Acetatos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Ácidos Graxos/metabolismo , Fermentação , Glicerol/metabolismo , Hidrólise , Ferro/metabolismo , Metano/biossíntese , Nitratos/metabolismo , Oxirredução , Sulfatos/metabolismo
5.
Environ Sci Technol ; 47(7): 3209-17, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23397992

RESUMO

We conducted microcosm tests and biogeochemical modeling to study U(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe(III), U(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100-120 days in the EVO microcosms versus 10-20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface.


Assuntos
Bactérias/metabolismo , Elétrons , Emulsões/metabolismo , Modelos Biológicos , Óleos de Plantas/metabolismo , Urânio/isolamento & purificação , Acetatos/metabolismo , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Etanol/metabolismo , Hidrólise , Ferro/metabolismo , Ácido Oleico/metabolismo , Oxirredução , Sulfatos/metabolismo
6.
Zhonghua Yi Shi Za Zhi ; 34(3): 134-7, 2004 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-15555222

RESUMO

Many kinds of infectious diseases had been prevalent during the Chinese Soviet Republic period. Experiences were accumulated during the fighting against these diseases, and high attention paid by the government including the party, the military and the administration, and strengthening of legislation for prevention and treatment works, with the Red Army as the main task force for the work, and the great mass actively involved in this work, with active propaganda for its prevention and treatment.


Assuntos
Governo , História do Século XX , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA