Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(3): 1968-1982, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36401725

RESUMO

Radix Pseudostellariae, a traditional Chinese medicine, functions in modulating human immunity and anti-tumor, but its pharmacological mechanism remained unclear. In this study, 8 active components and 91 targets of Radix Pseudostellariae were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and 225 genes related to gastric cancer (GC) were accessed from MalaCards. On the basis of these targets and GC-related genes, a protein-protein interaction (PPI) network was established. Random walk with restart (RWR) analysis was performed on the PPI network with the intersection of targets and GC-related genes as the seeds. The top 50 target genes with high affinity scores were obtained. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the enrichment of the top 50 genes was mostly presented in the cancer-related biological functions and signaling pathways, such as cellular response to oxidative stress, regulation of apoptotic signaling pathway, and P53 signaling pathway. A drug-component-target network was established, with the top 50 genes being used as key targets. Acacetin and luteolin were revealed to directly act on the core target TP53 in the network. Thus, SwissDock was used to simulate the molecular docking between TP53 protein and acacetin and luteolin. The results of docking simulation presented small estimated ΔG of two small molecules, which were suggested to be potential targets of TP53 protein. Subsequent cellular and molecular experiments confirmed this bioinformatics result. In conclusion, this study predicted the key anti-GC active components and corresponding targets of Radix Pseudostellariae through bioinformatics analysis. The findings underlie the anti-GC mechanism of Radix Pseudostellariae.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Humanos , Simulação de Acoplamento Molecular , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Farmacologia em Rede , Luteolina , Proteína Supressora de Tumor p53 , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa
2.
Poult Sci ; 100(3): 100875, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516466

RESUMO

This study was conducted to determine the effects of dietary addition of α-glyceryl monolaurate (α-GML) on growth performance, immune function, volatile fatty acids production and cecal microbiota in broiler chickens. A total of 480 1-day-old yellow-feathered broilers were randomly assigned in equal numbers to 4 dietary treatments: basal diet (NCO) or supplementations with 30 mg/kg bacitracin (ANT), 500 mg/kg α-GML, or 1,000 mg/kg α-GML (GML2). And, each treatment contained 8 replicates with 15 chickens per replicate. After supplementation with α-GML, the total BW gain and average daily weight gain of broilers increased significantly (P < 0.05) compared with the broilers on the NCO diet. Moreover, compared with the NCO group, higher levels of immune globulin M and immune globulin Y were observed in both GML groups and the ANT group. Concentrations of acetate, propionate, butyrate, valerate, and isovalerate in GML2 were significantly higher (P < 0.05) than those in the NCO group on day 28. However, acetate, propionate, valerate, and isovalerate concentrations were reduced to significantly (P < 0.05) lower than those in the NCO group on day 56. The abundance and diversity of microbiota were found to be improved in broilers that were supplemented with GML, using operational taxonomic unit and diversity analyses. Furthermore, the GML treatments increased favorable microbiota, particularly acid-producing bacteria, on day 28 and, also, reduced opportunistic pathogens, such as Alistipes tidjanibacter and Bacteroides dorei by day 56. These results suggest that α-GML supplementation modulates cecal microbiota and broiler immunity and improves volatile fatty acid levels during the early growth stages of broilers.


Assuntos
Galinhas , Suplementos Nutricionais , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Glicerídeos , Imunidade , Animais , Biodiversidade , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Glicerídeos/farmacologia , Imunidade/efeitos dos fármacos , Distribuição Aleatória , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA