Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed J ; 44(3): 293-303, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34119448

RESUMO

BACKGROUND: While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presents with mild or no symptoms in most cases, a significant number of patients become critically ill. Remdesivir has been approved for the treatment of coronavirus disease 2019 (COVID-19) in several countries, but its use as monotherapy has not substantially lowered mortality rates. Because agents from traditional Chinese medicine (TCM) have been successfully utilized to treat pandemic and endemic diseases, we designed the current study to identify novel anti-SARS-CoV-2 agents from TCM. METHODS: We initially used an antivirus-induced cell death assay to screen a panel of herbal extracts. The inhibition of the viral infection step was investigated through a time-of-drug-addition assay, whereas a plaque reduction assay was carried out to validate the antiviral activity. Direct interaction of the candidate TCM compound with viral particles was assessed using a viral inactivation assay. Finally, the potential synergistic efficacy of remdesivir and the TCM compound was examined with a combination assay. RESULTS: The herbal medicine Perilla leaf extract (PLE, approval number 022427 issued by the Ministry of Health and Welfare, Taiwan) had EC50 of 0.12 ± 0.06 mg/mL against SARS-CoV-2 in Vero E6 cells - with a selectivity index of 40.65. Non-cytotoxic PLE concentrations were capable of blocking viral RNA and protein synthesis. In addition, they significantly decreased virus-induced cytokine release and viral protein/RNA levels in the human lung epithelial cell line Calu-3. PLE inhibited viral replication by inactivating the virion and showed additive-to-synergistic efficacy against SARS-CoV-2 when used in combination with remdesivir. CONCLUSION: Our results demonstrate for the first time that PLE is capable of inhibiting SARS-CoV-2 replication by inactivating the virion. Our data may prompt additional investigation on the clinical usefulness of PLE for preventing or treating COVID-19.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Perilla frutescens , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Inativação de Vírus , Animais , COVID-19 , Chlorocebus aethiops , Humanos , Perilla frutescens/química
2.
Thorac Cancer ; 11(8): 2279-2290, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32633046

RESUMO

BACKGROUND: Patient-derived organoid (PDO) models are highly valuable and have potentially widespread clinical applications. However, limited information is available regarding organoid models of non-small cell lung cancer (NSCLC). This study aimed to characterize the consistency between primary tumors in NSCLC and PDOs and to explore the applications of PDOs as preclinical models to understand and predict treatment response during lung cancer. METHODS: Fresh tumor samples were harvested for organoid culture. Primary tumor samples and PDOs were analyzed via whole-exome sequencing. Paired samples were subjected to immunohistochemical analysis. There were 26 antineoplastic drugs tested in the PDOs. Cell viability was assessed using the Cell Titer Glo assay 7-10 days after drug treatment. A heatmap of log-transformed values of the half-maximal inhibitory concentrations was generated on the basis of drug responses of PDOs through nonlinear regression (curve fit). A total of 12 patients (stages I-III) were enrolled, and 7 paired surgical tumors and PDOs were analyzed. RESULTS: PDOs retained the histological and genetic characteristics of the primary tumors. The concordance between tumors and PDOs in mutations in the top 20 NSCLC-related genes was >80% in five patients. Sample purity was significantly and positively associated with variant allele frequency (Pearson r = 0.82, P = 0.0005) and chromosome stability. The in vitro response to drug screening with PDOs revealed high correlation with the mutation profiles in the primary tumors. CONCLUSIONS: PDOs are highly credible models for detecting NSCLC and for prospective prediction of the treatment response for personalized precision medicine. KEY POINTS: Lung cancer organoid models could save precious time of drug testing on patients, and accurately select anticancer drugs according to the drug sensitivity results, so as to provide a powerful supplement and verification for the gene sequencing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Genômica/métodos , Neoplasias Pulmonares/genética , Organoides/patologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA