Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 104: 106821, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387222

RESUMO

Ultrasonic seed (US) treatment could alter seed germination mechanism, however, US induced alterations in morph-physiological attributes and yield of fragrant rice were rarely reported. In the present study, the seeds of three fragrant rice cultivars viz., Xiangyaxiangzhan, Meixiangzhan 2, Ruanhuayou 6100 and one non-fragrant rice viz., Wufengyou 615 were exposed to ultrasonic waves at 20-40 kHz for 1.5 min (T) whereas the seeds without exposure were taken as control (CK). Results showed that US treatment caused minor cracks on seed surface while improved seed germination rate (1.79 %-11.09 %) and 3-indoleacetic acid (IAA) (3.36 %-46.91 %). Furthermore, peroxidase (POD) activity and methionine sulfoxide reductase activity was increased by 29.15 %-74.13 % and 11.26 %-20.87 %, respectively; however, methionine sulfoxide reductase related protein repairing gene MSRA4 was down-regulated by 17.93 % -41.04 % under T, compared to CK. Besides, US treatment also improved soluble protein in flag leaf (0.92 %-40.79 %), photosynthesis (3.37 %-16.46 %), biomass (5.17 %-31.87 %), as well as 2-acetyl-1-pyrroline content (4.77 %-15.48 %) in rice grains. In addition, multivariate analysis showed that the dry weight at the maturity stage were significantly related to the POD, glutathione reductase (GR) activity, IAA, and abscisic acid (ABA) content while germination rate was positively related to the GR activity, ABA content, and yield, but which were negatively related to the IAA and gibberellic acid content.


Assuntos
Oryza , Sementes , Sementes/metabolismo , Oryza/metabolismo , Germinação , Metionina Sulfóxido Redutases/metabolismo , Ultrassom , Antioxidantes/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
2.
J Hazard Mater ; 465: 133118, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101017

RESUMO

Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Oryza/química , Carbono/análise , Bactérias , Acidobacteria , Proteobactérias , Grão Comestível/química , Fósforo/análise , Nitrogênio/análise , China , Poluentes do Solo/análise
3.
Biomolecules ; 10(11)2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233373

RESUMO

Increasing evidence shows that cadmium (Cd) toxicity causes severe perturbations on growth performance, physio-biochemical and molecular processes in crop plants. Molybdenum (Mo), an essential trace element, plays key roles in oxidative stress tolerance of higher plants. Hence, the present study has been conducted to investigate the possible role of Mo in alleviating Cd-induced inhibitions in two fragrant rice cultivars namely Guixiangzhan (GXZ) and Meixiangzhan-2 (MXZ-2). The results revealed that Mo application enhanced the plant dry biomass by 73.24% in GXZ and 58.09% in MXZ-2 under Cd stress conditions, suggesting that Mo supplementation alleviated Cd-induced toxicity effects in fragrant rice. The enhanced Cd-tolerance in fragrant rice plants prompted by Mo application could be ascribed to its ability to regulate Cd uptake and reduce Cd-induced oxidative stress as evident by lower hydrogen peroxide levels, electrolyte leakage and malondialdehyde contents in Cd-stressed plants. The ameliorative role of Mo against Cd-toxicity also reflected through its protection to the photosynthetic pigments, proline and soluble protein. Mo also induced antioxidant defense systems via maintaining higher contents of glutathione and ascorbate as well as enhancing the ROS-detoxifying enzymes such as catalase, peroxidase, superoxide dismutase and ascorbate peroxidase activities and up-regulating transcript abundance in both fragrant rice cultivars under Cd stress. Conclusively, Mo-mediated modulation of Cd toxicity in fragrant rice was through restricting Cd uptake, maintaining photosynthetic performance and alleviating oxidative damages via the strong anti-oxidative defense systems; however, GXZ cultivar is comparatively more Cd tolerant and Mo-efficient as evident from the less growth inhibition and biomass reduction as well as enhanced Mo-induced Cd stress tolerance and less oxidative damage than MXZ-2 fragrant rice cultivar.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Molibdênio/farmacologia , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oligoelementos/farmacologia , Expressão Gênica , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/fisiologia
4.
Ecotoxicol Environ Saf ; 196: 110525, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224370

RESUMO

Fragrant rice is a high-valued quality rice type which is gaining much popularity over the globe due to its better cooking qualities and special aromatic characteristics. Selenium (Se) and silicon (Si) could improve the growth and yield of rice; however, the combine effects of Se and Si (Se-Si treatments) on rice grain quality, aroma and lodging in fragrant rice were rarely investigated. The pot and field experiments were conducted with two fragrant rice cultivars i.e., Xiangyaxiangzhan and Yuxiangyouzhan, grown under three Se levels i.e., 0, 120, and 240 mg kg-1 of soil (for pot experiment) and 0, 300, and 600 kg ha-1 (for field experiment) regarded as LSe, MSe and HSe, respectively and two Si levels i.e., 0 and 60 mg kg-1 of soil (for pot experiment) and 0 and 150 kg ha-1 (for field experiment) regarded as -Si and +Si, respectively. Results depicted that the Se-Si treatments regulated head rice yield, grain yield and yield related traits and the HSe+Si treatment sustainably improved the grain yield and head rice yield by regulating plant growth, antioxidant response and malondialdehyde (MDA) contents in fragrant rice. The Se-Si treatments also improved the grain 2AP contents owing to regulation in the proline, pyrroline-5-carboxylate (P5C) and γ-aminobutyric acid (GABA) contents. Besides, Se-Si treatments also regulated the grain quality attributes and influenced the plant Se contents. Moreover, the Si mitigated Se-induced lodging resulted from changes in the lodging parameters i.e., lodging index, fresh weight per tiller, pushing resistance force, plant height and bending moment. Overall, the Se and Si application improved the grain yield and regulated the dry weight accumulation, antioxidant attributes and quality attributes. Meanwhile, the Si application mitigated the negative effect of Se-induced lodging in fragrant rice.


Assuntos
Grão Comestível/efeitos dos fármacos , Odorantes/análise , Oryza/efeitos dos fármacos , Selênio/farmacologia , Silício/farmacologia , Antioxidantes/análise , Relação Dose-Resposta a Droga , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Malondialdeído/análise , Oryza/química , Oryza/crescimento & desenvolvimento , Prolina/análise , Pirróis/análise , Solo/química
5.
Sci Rep ; 6: 32148, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27557779

RESUMO

Nitrogen availability and illumination intensity are two key factors which affect rice growth. However, their influences on total nitrogen accumulation, photosynthetic rate, root morphologies, and yields are not fully understood. We conducted two field experiments to (1) evaluate the effects of shading under different N treatments on photosynthetic parameters, root morphologies, total nutrient accumulation, and grain yields of rice; and (2) elucidate the relationship between total nutrient accumulation and root morphologies under different shading conditions and nitrogen treatments. Three nitrogen rates, three shading treatments, and three different rice cultivars were used in two field experiments. Double shading during the grain-filling stage decreased total nutrient accumulation, altered root morphological characteristics, and decreased yields in rice. There were also significant interaction effects between nitrogen and shading on photosynthetic rate, transpiration rate, and total root length, root superficial area, and root volume. Significant interactions were found among cultivars and shading for photosynthetic rate and transpiration rate. Correlation analysis revealed that total nitrogen accumulation (TNA) and potassium accumulation (TKA) were significantly positively correlated with total root length, root superficial area, and root volume. N application could alleviate the detrimental effects of shading on total nutrient accumulation and grain yield in rice.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Raízes de Plantas/fisiologia , Genótipo , Luz , Oryza/fisiologia , Fósforo/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Potássio/metabolismo , Sementes/crescimento & desenvolvimento
6.
PLoS One ; 11(2): e0149523, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910246

RESUMO

Aromatic rice is highly prized by consumers worldwide due to its special aromatic character. 2-acetyl-1-pyrroline (2-AP) is considered to be the single most important volatile compound responsible for aroma in aromatic rice. The present study demonstrated the effects of 2-AP, zinc (Zn) and lanthanum (La) on the 2-AP concentration of detached aromatic rice panicles in vitro. Detached panicles from three well-known aromatic cultivars, Guixiangzhan, Pin14, and Pin 15, were cultured separately in basic culture medium supplemented with 2-AP, Zn and La, and 2-AP concentrations were assessed at 7 and 14 days after culture (DAC). The results show that supplementation of 2-AP, Zn and La in the basic culture medium significantly increases the accumulation of proline. 2-AP concentration and the activity of proline dehydrogenase (ProDH) were also increased in rice grains. Zn concentrations were also found to be higher when Zn was added to the basic culture medium, and La concentrations in grains were too low to be measured. Additionally, grain 2-AP concentrations were significantly and positively correlated with proline concentrations, ProDH activities in grains and 2-AP in culture medium. In summary, higher grain 2-AP concentrations might be due to Zn- and La-induced increases in proline concentrations and ProDH activities, as well as the direct uptake and transportation of 2-AP from the culture medium. Furthermore, application of both Zn and La might be helpful for improving aroma formation in rice. However, interactions of both these elements with the complex process of 2-AP formation remain to be explored.


Assuntos
Lantânio/farmacologia , Oryza/metabolismo , Pirróis/metabolismo , Pirróis/farmacologia , Sementes/metabolismo , Zinco/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Inflorescência , Oryza/efeitos dos fármacos , Prolina/metabolismo , Prolina Oxidase/metabolismo , Sementes/efeitos dos fármacos , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA