Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 18(6)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34874304

RESUMO

Objective. To investigate computationally the interaction of combined electrical and ultrasonic modulation of isolated neurons and of the parkinsonian cortex-basal ganglia-thalamus loop.Approach. Continuous-wave or pulsed electrical and ultrasonic neuromodulation is applied to isolated Otsuka plateau-potential generating subthalamic nucleus (STN) and Pospischil regular, fast and low-threshold spiking cortical cells in a temporally alternating or simultaneous manner. Similar combinations of electrical/ultrasonic waveforms are applied to a parkinsonian biophysical cortex-basal ganglia-thalamus neuronal network. Ultrasound-neuron interaction is modelled respectively for isolated neurons and the neuronal network with the NICE and SONIC implementations of the bilayer sonophore underlying mechanism. Reduction inα-ßspectral energy is used as a proxy to express improvement in Parkinson's disease by insonication and electrostimulation.Main results. Simultaneous electro-acoustic stimulation achieves a given level of neuronal activity at lower intensities compared to the separate stimulation modalities. Conversely, temporally alternating stimulation with50 Hzelectrical and ultrasound pulses is capable of eliciting100 HzSTN firing rates. Furthermore, combination of ultrasound with hyperpolarizing currents can alter cortical cell relative spiking regimes. In the parkinsonian neuronal network, continuous-wave and pulsed ultrasound reduce pathological oscillations by different mechanisms. High-frequency pulsed separated electrical and ultrasonic deep brain stimulation (DBS) reduce pathologicalα-ßpower by entraining STN-neurons. In contrast, continuous-wave ultrasound reduces pathological oscillations by silencing the STN. Compared to the separated stimulation modalities, temporally simultaneous or alternating electro-acoustic stimulation can achieve higher reductions inα-ßpower for the same safety contraints on electrical/ultrasonic intensity.Significance. Focused ultrasound has the potential of becoming a non-invasive alternative of conventional DBS for the treatment of Parkinson's disease. Here, we elaborate on proposed benefits of combined electro-acoustic stimulation in terms of improved dynamic range, efficiency, spatial resolution, and neuronal selectivity.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Terapia por Ultrassom , Gânglios da Base , Estimulação Encefálica Profunda/métodos , Neurônios/fisiologia , Núcleo Subtalâmico/fisiologia , Tálamo/fisiologia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2166-2169, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440833

RESUMO

Deep brain stimulation is an established surgical treatment for several neurological and movement disorders, such as Parkinson's disease, in which electrostimulation is applied to targeted deep nuclei in the basal ganglia through implanted electrode leads. Recent technological improvements in the field have focused on the theoretical advantage of current steering and adaptive (closed-loop) deep brain stimulation. Current steering between several active electrodes would allow for improved accuracy when targeting the desired brain structures. This has the additional benefit of avoiding undesired stimulation of neural tracts that are related to side effects, e.g., internal capsule fibres of passage in subthalamic nucleus deep brain stimulation. Closed-loop deep brain stimulation is based on the premise of continuous recording of a proxy for pathological neural activity (such as beta-band power of measured local field potentials in patients with Parkinson's disease) and accordingly adapting the used stimulus parameters. In this study, we investigate the suitability of an existing highresolution neurorecording probe for high-precision neurostimulation. If a subset of the probe's recording electrodes can be used for stimulation, then the probe would be a suitable candidate for closed-loop deep brain stimulation. A finiteelement model is used to calculate the electric potential, induced by current injection through the high-resolution probe, for different sets of active electrodes. Volumes of activated tissue are calculated and a comparison is made between the highresolution probe and a conventional stimulation lead. We investigate the capability of the probe to shift the volume of activated tissue by steering currents to different sets of active electrodes. Finally, safety limits for the injected current are used to determine the size of the volume in which neurons can be activated with the relatively small electrodes patches on the highresolution probe.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Gânglios da Base , Eletrodos Implantados , Humanos , Doença de Parkinson/terapia
3.
Med Biol Eng Comput ; 56(9): 1595-1613, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29476320

RESUMO

Neuronal excitability is determined in a complex way by several interacting factors, such as membrane dynamics, fibre geometry, electrode configuration, myelin impedance, neuronal terminations[Formula: see text] This study aims to increase understanding in excitability, by investigating the impact of these factors on different models of myelinated and unmyelinated fibres (five well-known membrane models are combined with three electrostimulation models, that take into account the spatial structure of the neuron). Several excitability indices (rheobase, polarity ratio, bi/monophasic ratio, time constants[Formula: see text]) are calculated during extensive parameter sweeps, allowing us to obtain novel findings on how these factors interact, e.g. how the dependency of excitability indices on the fibre diameter and myelin impedance is influenced by the electrode location and membrane dynamics. It was found that excitability is profoundly impacted by the used membrane model and the location of the neuronal terminations. The approximation of infinite myelin impedance was investigated by two implementations of the spatially extended non-linear node model. The impact of this approximation on the time constant of strength-duration plots is significant, most importantly in the Frankenhaeuser-Huxley membrane model for large electrode-neuron separations. Finally, a multi-compartmental model for C-fibres is used to determine the impact of the absence of internodes on excitability. Graphical Abstract Electrostimulation models, obtained by combining five membrane models with three representations of the neuronal cable equation, are fed with electrode and stimulus input parameters. The dependency of neuronal excitability on the interaction of these input parameters is determined by deriving excitability indices from the spatiotemporal model response. The impact of the myelin impedance and the fibre diameter on neural excitability is also considered.


Assuntos
Canais Iônicos/metabolismo , Modelos Neurológicos , Bainha de Mielina/metabolismo , Potenciais de Ação , Animais , Simulação por Computador , Eletrodos , Humanos , Fibras Nervosas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA