Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 27(4): 484-496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459523

RESUMO

AIMS: Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5-PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic-related neurodegeneration. The aim of the present study was to investigate whether 5-PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy. METHODS: 5-PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5-PAHSA for 24 h, while mice were administered with 5-PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors. RESULTS: Although there was no significant improvement in glucose metabolism in mice administered with 5-PAHSA, ox-LDL decreased significantly following the administration of 5-PAHSA in serum of DB/DB mice (p < 0.0001). We also found that the phosphorylation of m-TOR and ULK-1 was suppressed in both PC12 cells and DB/DB mice following the administration of 5-PAHSA (p < 0.05 and p < 0.01), although increased levels of autophagy were only observed in vitro (p < 0.05). Following the administration of 5-PAHSA, the concentration of ROS decreased in PC12 cells and the levels of CRP increased in high-dose group of 5-PAHSA (p < 0.01). There were no significant changes in terms of apoptosis, other inflammatory factors, or cognition in DB/DB mice following the administration of 5-PAHSA. CONCLUSION: We found that 5-PAHSA can enhance autophagy in PC12 cells under diabetic conditions. Our data demonstrated that 5-PAHSA inhibits phosphorylation of the m-TOR-ULK1 pathway and suppressed oxidative stress in PC12 cells, and exerted influence on lipid metabolism in DB/DB mice.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Palmítico/farmacologia , Ácidos Esteáricos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Ácido Palmítico/uso terapêutico , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ácidos Esteáricos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
2.
Metab Brain Dis ; 33(6): 1887-1897, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30187180

RESUMO

To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.


Assuntos
Envelhecimento/metabolismo , Proteína Beclina-1/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Proteína Beclina-1/agonistas , Disfunção Cognitiva/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Ginkgo biloba , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA