Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35707476

RESUMO

Our study aims to evaluate the chemical profiles and antioxidant activities of a methanolic extract of Sterculia villosa bark (MESV) and a methanolic extract of the Vernonia patula whole plant (MEVP). The chemical profiling of MESV and MEVP was performed via gas chromatography-mass spectrometry (GC-MS), which identified 52 and 33 chemical compounds, respectively. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay indicated that both MESV and MEVP displayed concentration-dependent scavenging activities, and half-maximal inhibitory concentration (IC50) values for MEVP, MESV, and ascorbic acid were 305.30, 555.44, and 36.32 µg/mL, respectively. The total flavonoid content (TFC) and total phenolic content (TPC) of MESV were 81.44 ± 2.70 mg quercetin equivalents (QE)/g dry extract and 62.58 ± 1.93 mg gallic acid equivalent (GAE)/g dry extract, whereas these values for MEVP were 291.31 ± 6.61 mg QE/g dry extract and 58.99 ± 3.16 mg GAE/g dry extract, respectively. Molecular docking studies were also evaluated, and absorption, distribution, metabolism, and excretion (ADME) and toxicological properties were assessed. Therefore, these two plants, S. villosa and V. patula, showed potential options for further advanced studies into oxidative stress.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35140801

RESUMO

The methanolic extract of Argyreia capitiformis stem was examined for anti-inflammatory activities following network pharmacology analysis and molecular docking study. Based on gas chromatography-mass spectrometry (GC-MS) analysis, 49 compounds were identified from the methanolic extract of A. capitiformis stem. A network pharmacology analysis was conducted against the identified compounds, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology analysis of biological processes and molecular functions were performed. Six proteins (IL1R1, IRAK4, MYD88, TIRAP, TLR4, and TRAF6) were identified from the KEGG pathway analysis and subjected to molecular docking study. Additionally, six best ligand efficiency compounds and positive control (aspirin) from each protein were evaluated for their stability using the molecular dynamics simulation study. Our study suggested that IL1R1, IRAK4, MYD88, TIRAP, TLR4, and TRAF6 proteins may be targeted by compounds in the methanolic extract of A. capitiformis stem to provide anti-inflammatory effects.

3.
J Ethnopharmacol ; 282: 114588, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480997

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY: This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS: The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS: Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Bangladesh , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etnofarmacologia/métodos , Etnofarmacologia/tendências , Humanos , Substâncias Protetoras/farmacologia
4.
Biomed Pharmacother ; 142: 112109, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34470730

RESUMO

Plant-derived chemicals are a source of novel chemotherapeutic agents. Throughout the human civilization, these novel chemicals have led to the discovery of new pharmacological active agents. Research on herbal medicine is of great importance, as most of the active agents used for treating numerous diseases are from natural sources, while other agents are either semisynthetic or synthetic. Pongamol, a flavonoid, which is the main constituent of Pongamia pinnata, is one such active agents, which exhibits diverse pharmacological activities. Various in vivo and in vitro studies revealed that pongamol is a potentially active agent, as it exerts anticancer, anti-inflammatory, antioxidant, antimicrobial, and anti-diabetic activities. Accordingly, the aim of the present review was to give an up-to-date overview on the chemistry, isolation, bioavailability, pharmacological activity, and health benefits of pongamol. This review focuses on the medicinal and health promoting activities of pongamol, along with possible mechanisms of action. For this purpose, this review summarizes the most recent literature pertaining to pongamol as a therapeutic agent against several diseases. In addition, the review covers information related to the toxicological assessment and safety of this phytochemical, and highlights the medicinal and folk values of this compound against various diseases and ailments.


Assuntos
Benzofuranos/farmacologia , Millettia/química , Animais , Benzofuranos/efeitos adversos , Benzofuranos/isolamento & purificação , Disponibilidade Biológica , Humanos , Medicina Tradicional/métodos
5.
Phytomedicine ; 90: 153649, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34325978

RESUMO

BACKGROUND: Indole alkaloids are very promising for potential therapeutic purposes and appear to be particularly effective against respiratory diseases. Several experimental studies have been performed, both in vivo and in vitro, to evaluate the effectiveness of indole alkaloids for the management of respiratory disorders, including asthma, emphysema, tuberculosis, cancer, and pulmonary fibrosis. PURPOSE: The fundamental objective of this review was to summarize the in-depth therapeutic potential of indole alkaloids against various respiratory disorders. STUDY DESIGN: In addition to describing the therapeutic potential, this review also evaluates the toxicity of these alkaloids, which have been utilized for therapeutic benefits but have demonstrated toxic consequences. Some indole alkaloids, including scholaricine, 19-epischolaricine, vallesamine, and picrinine, which are derived from the plant Alstonia scholaris, have shown toxic effects in non-rodent models. METHODS: This review also discusses clinical studies exploring the therapeutic efficacy of indole alkaloids, which have confirmed the promising benefits observed in vivo and in vitro. RESULTS: The indole alkaloidal compounds have shown efficacy in subjects with respiratory diseases. CONCLUSION: The available data established both preclinical and clinical studies confirm the potential of indole alkaloids to treat the respiratory disorders.


Assuntos
Alcaloides Indólicos , Pneumopatias/tratamento farmacológico , Alstonia/química , Humanos , Alcaloides Indólicos/farmacologia , Estrutura Molecular
6.
Plants (Basel) ; 10(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918026

RESUMO

The use of conventional drugs to treat metabolic disorders and the pathological consequences of diabetes further increases the complications because of the side effects, and is sometimes burdensome due to relatively higher costs and occasionally painful route of administration of these drugs. Therefore, shifting to herbal medicine may be more effective, economical, have fewer side effects and might have minimal toxicity. The present review amasses a list of ethnomedicinal plants of 143 species belonging to 61 families, from distinctive domestic survey literature, reported to have been used to treat diabetes by the ethnic and local people of Bangladesh. Leaves of the medicinal plants were found leading in terms of their use, followed by fruits, whole plants, roots, seeds, bark, stems, flowers, and rhizomes. This review provides starting information leading to the search for and use of indigenous botanical resources to discover bioactive compounds for novel hypoglycemic drug development.

7.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921093

RESUMO

Plant-based indole alkaloids are very rich in pharmacological activities, and the indole nucleus is considered to contribute greatly to these activities. This review's fundamental objective is to summarize the pharmacological potential of indole alkaloids that have been derived from plants and provide a detailed evaluation of their established pharmacological activities, which may contribute to identifying new lead compounds. The study was performed by searching various scientific databases, including Springer, Elsevier, ACS Publications, Taylor and Francis, Thieme, Wiley Online Library, ProQuest, MDPI, and online scientific books. A total of 100 indole compounds were identified and reviewed. The most active compounds possessed a variety of pharmacological activities, including anticancer, antibacterial, antiviral, antimalarial, antifungal, anti-inflammatory, antidepressant, analgesic, hypotensive, anticholinesterase, antiplatelet, antidiarrheal, spasmolytic, antileishmanial, lipid-lowering, antimycobacterial, and antidiabetic activities. Although some compounds have potent activity, some only have mild-to-moderate activity. The pharmacokinetic profiles of some of the identified compounds, such as brucine, mitragynine, 7-hydroxymitragynine, vindoline, and harmane, were also reviewed. Most of these compounds showed promising pharmacological activity. An in-depth pharmacological evaluation of these compounds should be performed to determine whether any of these indoles may serve as new leads.


Assuntos
Alcaloides/química , Extratos Vegetais/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Humanos
8.
Life (Basel) ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917319

RESUMO

Bromelain is an effective chemoresponsive proteolytic enzyme derived from pineapple stems. It contains several thiol endopeptidases and is extracted and purified via several methods. It is most commonly used as an anti-inflammatory agent, though scientists have also discovered its potential as an anticancer and antimicrobial agent. It has been reported as having positive effects on the respiratory, digestive, and circulatory systems, and potentially on the immune system. It is a natural remedy for easing arthritis symptoms, including joint pain and stiffness. This review details bromelain's varied uses in healthcare, its low toxicity, and its relationship to nanoparticles. The door of infinite possibilities will be opened up if further extensive research is carried out on this pineapple-derived enzyme.

9.
Life (Basel) ; 11(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671381

RESUMO

Syzygium fruticosum (SF), a valuable Bangladeshi fruit, is considered an alternative therapeutic agent. Mainly, seeds are used as nutritional phytotherapy to ease physical and mental status by preventing chronic diseases. Here, we scrutinized the S. fruticosum seed's fundamental importance in traditional medicine by following an integrated approach combining in vivo, in vitro, and in silico studies. The SF was fractionated with different solvents, and the ethyl acetate fraction of SF (EaF-SF) was further studied. Mice treated with EaF-SF (200 and 400 mg/kg) manifested anxiolysis evidenced by higher exploration in elevated plus maze and hole board tests. Similarly, a dose-dependent drop of immobility time in a forced swimming test ensured significant anti-depressant activity. Moreover, higher dose treatment exposed reduced exploratory behaviour resembling decreased movement and prolonged sleeping latency with a quick onset of sleep during the open field and thiopental-induced sleeping tests, respectively. In parallel, EaF-SF significantly (p < 0.001) and dose-dependently suppressed acetic acid and formalin-induced pain in mice. Also, a noteworthy anti-inflammatory activity and a substantial (p < 0.01) clot lysis activity (thrombolytic) was observed. Gas chromatography-mass spectrometry (GC-MS) analysis resulted in 49 bioactive compounds. Among them, 12 bioactive compounds with Lipinski's rule and safety confirmation showed strong binding affinity (molecular docking) against the receptors of each model used. To conclude, the S. fruticosum seed is a prospective source of health-promoting effects that can be an excellent candidate for preventing degenerative diseases.

10.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557235

RESUMO

The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.


Assuntos
Simulação por Computador , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Urticaceae/química , Analgésicos/química , Analgésicos/metabolismo , Analgésicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antidepressivos/química , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo , Conformação Proteica
11.
Molecules ; 25(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167510

RESUMO

Pani heloch (Antidesma montanum) is traditionally used to treat innumerable diseases and is a source of wild vegetables for the management of different pathological conditions. The present study explored the qualitative phytochemicals; quantitative phenol and flavonoid contents; in vitro antioxidant, anti-inflammatory, and thrombolytic effects; and in vivo antipyretic and analgesic properties of the methanol extract of A. montanum leaves in different experimental models. The extract exhibited secondary metabolites including alkaloids, flavonoids, flavanols, phytosterols, cholesterols, phenols, terpenoids, glycosides, fixed oils, emodines, coumarins, resins, and tannins. Besides, Pani heloch showed strong antioxidant activity (IC50 = 99.00 µg/mL), while a moderate percentage of clot lysis (31.56%) in human blood and significant anti-inflammatory activity (p < 0.001) was achieved with the standard. Moreover, the analgesic and antipyretic properties appeared to trigger a significant response (p < 0.001) relative to in the control group. Besides, an in silico study of carpusin revealed favorable protein-binding affinities. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity analysis and toxicological properties of all isolated compounds adopted Lipinski's rule of five for drug-like potential and level of toxicity. Our research unveiled that the methanol extract of A. montanum leaves exhibited secondary metabolites that are a good source for managing inflammation, pyrexia, pain, and cellular toxicity. Computational approaches and further studies are required to identify the possible mechanism which responsible for the biological effects.


Assuntos
Magnoliopsida/química , Extratos Vegetais/química , Folhas de Planta/química , Albuminas/química , Analgésicos/química , Anti-Inflamatórios/química , Antioxidantes/química , Antipiréticos/química , Compostos de Bifenilo/química , Eritrócitos/efeitos dos fármacos , Fibrinolíticos/química , Flavonoides/química , Sequestradores de Radicais Livres , Humanos , Inflamação , Simulação de Acoplamento Molecular , Fenóis/química , Compostos Fitoquímicos/química , Fitoterapia , Picratos/química , Soroalbumina Bovina/química , Software , Terapia Trombolítica
12.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899148

RESUMO

Cycas pectinata Buch.-Ham. is commonly used in folk medicine against various disorders. The present study investigated the antidepressant and cytotoxicity activity of methanol extract of C. pectinata (MECP) along with quantitative phytochemical analysis by GC-MS method. Here, the GC-MS study of MECP presented 41 compounds, among which most were fatty acids, esters, terpenoids and oximes. The antidepressant activity was assessed by the forced swimming test (FST) and tail suspension test (TST) models. In contrast, MECP (200 and 400 mg/kg) exhibited a significant and dose-dependent manner reduction in immobility comparable with fluoxetine (10 mg/kg) and phenelzine (20 mg/kg). MECP showed a weak toxicity level in the brine shrimp lethality bioassay (ED50: 358.65 µg/mL) comparable to the standard drug vincristine sulfate (ED50: 2.39 µg/mL). Three compounds from the GC-MS study were subjected to density functional theory (DFT) calculations, where only cyclopentadecanone oxime showed positive and negative active binding sites. Cyclopentadecanone oxime also showed a good binding interaction in suppressing depression disorders by blocking monoamine oxidase and serotonin receptors with better pharmacokinetic and toxicological properties. Overall, the MECP exhibited a significant antidepressant activity with moderate toxicity, which required further advance studies to identify the mechanism.

13.
Plants (Basel) ; 10(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396698

RESUMO

The Curcuma genus has been extensively used for therapeutic purposes in traditional or folk medicine worldwide, including for its anti-inflammatory activity. Curcuma spp.'s active constituents, such as alkaloids, flavonoids, and terpenoids, can act on various targets in the signaling pathway, restrain pro-inflammatory enzymes, lower the production of inflammatory cytokines and chemokines, and reduce oxidative stress, which subsequently suppresses inflammatory processes. Preclinical and clinical studies have reported the predominant anti-inflammatory activity of several Curcuma species. This review provides an overview of the anti-inflammatory effects of different extracts, preparations, and bioactive components in this genus. This analysis may provide a scientific basis for developing new and alternative methods for the isolation of a single entity from this genus to attenuate inflammatory conditions. The Curcuma genus is waiting for researchers interested in developing safe and efficient anti-inflammatory agents for further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA