Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 241: 115942, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290190

RESUMO

In the present study, a simple, innovative, and economically beneficial method has been proposed for the synthesis of Ag@Ag2O core-shell nanocomposites using Acanthophora muscoides algae extract. The host-guest recognition of targets was performed by modification of the Ag@Ag2O surface using ß-CD. The Ag@Ag2O- ß-CD NCs were used as a colorimetric sensor to determine L-Tryptophan and L-Tyrosine using a partial least square (PLS) approach. A crystalline hybrid structure of Ag core and an Ag2O shell was confirmed by XRD, FTIR, TEM and AFM research. Also, DLS analysis and surface zeta potential spectra illustrated the aggregated nature of nanocomposites in the presence of analytes. The literature review shows that the colorimetric simultaneous determination of L-Tryptophan (L-Try) and L-Tyrosine (L-Tyr) has not been reported. The Ag@Ag2O- ß-CD sensor exhibited outstanding sensing capability in a broad linear range of 2.0 -200 µM for both amino acids and low detection limit of 0.32 and 0.51 µM, for L-Try and L-Tyr, respectively. The good sensitivity and excellent selectivity regarding possible interfering species, originated from the synergistic effect of host-guest recognition in combination with colorimetric sensing. Additionally, determination of analytes in various pharmaceutical, supplement and urine samples, approved the practical applicability of the constructed sensor. The computed results confirmed that colorimetric sensing in conjunction with a PLS technique was appropriate for the precise and accurate simultaneous determination of target amino acids in complex mixtures with RMSEP less than 2.5% and recovery in the range of 103-108% with R.S.D. values less than 3%.


Assuntos
Nanocompostos , Triptofano , Triptofano/análise , Tirosina , Colorimetria , Nanocompostos/química , Preparações Farmacêuticas
2.
Physiol Plant ; 174(6): e13832, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437590

RESUMO

The involvement of melatonin in the regulation of salt stress acclimation has been shown in plants in this present work. We found that the GOAL cultivar of wheat (Triticum aestivum L.) was the most salt-tolerant among the investigated cultivars, GOAL, HD-2967, PBW-17, PBW-343, PBW-550, and WH-1105 when screened for tolerance to 100 mM NaCl. The application of 100 µM melatonin maximally reduced oxidative stress and improved photosynthesis in the cv. GOAL. Melatonin supplementation reduced salt stress-induced oxidative stress by upregulating the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and reduced the glutathione (GSH) production. This resulted in increased membrane stability, photosynthetic-N use efficiency and photosynthesis in plants. The application of 50 µM of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) in the presence of melatonin and salt stress increased H2 O2 content but reduced GR activity and GSH, photosynthesis, and plant dry mass. This signifies that melatonin-mediated salt stress tolerance was related to ethylene synthesis as it improved antioxidant activity and photosynthesis of plants under salt stress. Thus, the interaction of melatonin and ethylene bears a prominent role in salt stress tolerance in wheat and can be used to develop salt tolerance in other crops.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Triticum/metabolismo , Fotossíntese , Etilenos , Estresse Oxidativo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA