Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Transl Myol ; 32(2)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713537

RESUMO

Mutations in PNPLA2 gene encoding for adipose triglyceride lipase (ATGL), involved in triglyceride degradation, lead to an inborn error of neutral lipid metabolism. The disorder that results in abnormal storage of neutral lipid is known as neutral lipid storage disease with myopathy (NLSDM). We report the follow-up of a 30-year-old woman with NLSDM, asymptomatic until age 23. At the age of 18, a high level of CPK and neutral lipid abnormal accumulation in muscle and skin cells suggested NLSDM diagnosis, afterwards confirmed by PNPLA2 analysis. After 5 years, she developed weakness in the upper and lower extremities. She was put on a low-fat diet with medium-chain triglycerides (MCT) oil supplementation but, although her CPK level decreased, myopathy continued to progress. At present, she presents severe skeletal myopathy without cardiac involvement. In this patient, no beneficial effects on progressive skeletal muscle weakness were detected after the MCT diet, probably due to complete loss of PNPLA2 expression.

2.
Crit Rev Biochem Mol Biol ; 56(4): 360-372, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33823724

RESUMO

Electron transfer flavoprotein dehydrogenase, also called ETF-ubiquinone oxidoreductase (ETF-QO), is a protein localized in the inner membrane of mitochondria, playing a central role in the electron-transfer system. Indeed, ETF-QO mediates electron transport from flavoprotein dehydrogenases to the ubiquinone pool. ETF-QO mutations are often associated with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD, OMIM#231680), a multisystem genetic disease characterized by various clinical manifestations with different degrees of severity. In this review, we outline the clinical features correlated with ETF-QO deficiency and the benefits obtained from different treatments, such as riboflavin, L-carnitine and/or coenzyme Q10 supplementation, and a diet poor in fat and protein. Moreover, we provide a detailed summary of molecular and bioinformatic investigations, describing the mutations identified in ETFDH gene and highlighting their predicted impact on enzymatic structure and activity. In addition, we report biochemical and functional analysis, performed in HEK293 cells and patient fibroblasts and muscle cells, to show the relationship between the nature of ETFDH mutations, the variable impairment of enzyme function, and the different degrees of RR-MADD severity. Finally, we describe in detail 5 RR-MADD patients carrying different ETFDH mutations and presenting variable degrees of clinical symptom severity.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Proteínas Ferro-Enxofre , Mitocôndrias , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Carnitina/genética , Carnitina/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/enzimologia , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/genética , Ubiquinona/metabolismo
3.
Lipids Health Dis ; 17(1): 254, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424791

RESUMO

BACKGROUND: Deficiency of electron transfer flavoprotein dehydrogenase (ETFDH) is associated with multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder is an autosomal recessive lipid storage myopathy (LSM) that exhibits a wide range of clinical features, including myopathy, weakness and multisystem dysfunctions. Many patients with late onset of MADD improve when treated with riboflavin and are also referred to as RR-MADD (riboflavin-responsive multiple Acyl-CoA dehydrogenase disorder). METHODS: In this study, we report the clinical and genetic characterization of a novel RR-MADD patient. Biochemical data were obtained from analysis of muscle and plasma samples. DNA and RNA were extracted from peripheral blood, and sequence analysis and expression study of ETFDH gene were performed. Finally, the impact of mutations on ETFDH folding was evaluated using bioinformatic tools. RESULTS: Patient initially presented with vomiting, muscle weakness, and acidosis. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of long and medium chain acylcarnitines, supporting the diagnosis of RR-MADD. Molecular analysis of ETFDH gene revealed two heterozygous mutations, a novel splice variation in intron 10, c.1285 + 1G > A, and the previously reported c.560C > T missense mutation. RT-PCR analysis showed an alteration of ETFDH RNA splicing which in turn should lead to the production of a truncated protein. The in silico prediction analysis of ETFDH tridimensional structure demonstrated that the missense mutation resulted in instability and loss of protein activation, while the splice site variation induced a dramatic conformational change of the truncated protein. After MCT diet supplemented with carnitine and riboflavin, the patient showed significant biochemical and clinical improvement, in spite of severe molecular defect. CONCLUSION: This case report extends the spectrum of ETFDH mutations in MADD, providing further evidence that patients presenting at least one missense mutation in the FAD-binding domain may respond to either carnitine or riboflavin treatment, due to the recovery of some enzymatic activity.


Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Carnitina/uso terapêutico , Simulação por Computador , Análise Mutacional de DNA , Quimioterapia Combinada , Flavoproteínas Transferidoras de Elétrons/metabolismo , Feminino , Humanos , Proteínas Ferro-Enxofre/metabolismo , Pessoa de Meia-Idade , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/enzimologia , Músculo Esquelético/enzimologia , Mutação de Sentido Incorreto , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Riboflavina/uso terapêutico
4.
JIMD Rep ; 38: 33-40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28456887

RESUMO

We present six novel patients affected by lipid storage myopathy (LSM) presenting mutations in the ETFDH gene. Although the diagnosis of multiple acyl-coenzyme-A dehydrogenase deficiency (MADD) in adult life is difficult, it is rewarding because of the possibility of treating patients with carnitine or riboflavin, leading to a full recovery. In our patients, a combination of precipitating risk factors including previous anorexia, alcoholism, poor nutrition, and pregnancy contributed to a metabolic critical condition that precipitated the catabolic state.In the present series of cases, five novel mutations have been identified in the ETFDH gene. We propose clinical guidelines to screen patients with LSM due to different defects, in order to obtain a fast diagnosis and offer appropriate treatment. In such patients, early diagnosis and treatment as well as avoiding risk factors are part of clinical management.Specific biochemical studies are indicated to identify the type of LSM, such as level of free carnitine and acyl-carnitines and studies or organic acidemia. Indeed, when a patient is biochemically diagnosed with secondary carnitine deficiency, a follow-up with appropriate clinical-molecular protocol and genetic analysis is important to establish the final diagnosis, since riboflavin can be supplemented with benefit if riboflavin-responsive MADD is present. In muscle biopsies, increased lipophagy associated with p62-positive aggregates was observed. The clinical improvement can be attributed to the removal of an autophagic block, which appears to be reversible in this LSM.

5.
Neurol Sci ; 32(4): 571-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21234782

RESUMO

The expression of voltage-gated potassium channels belonging to the Kv3 family has been studied in the sensori-motor cortex of rats exposed to alcohol inhalation during the first postnatal week (P2-P6). The study was carried out using comparative RT-PCR. At P9, a significant reduction of the expression of Kv3.2 and Kv3.4 subunits occurred in alcohol-treated animals, as compared with controls. The expression of the Kv3.4a splicing variant, which is thought to be critically involved in the high-frequency firing of some cortical interneurons, was also correspondingly reduced. The downregulation of Kv3.2 and Kv3.4a subunits represented a long-lasting effect of alcohol exposure, since it was also observed in P24 animals. The expression of both Kv3.1 and Kv3.3 channels appeared to be not significantly affected by alcohol exposure. An increased susceptibility to apoptotic neuronal death after early postnatal exposure to ethanol was confirmed by the lower bcl-2/bax ratio observed in alcohol-treated animals. Although Kv3.4 subunits are thought to trigger apoptosis, the lack of upregulation in our model argues against their involvement in the mechanism leading to alcohol-induced apoptosis. The possible consequences of the selective downregulation of Kv3 subunits on the cortical function, as well as their relevance for the genesis of fetal alcohol effects, are discussed.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Córtex Cerebral/metabolismo , Etanol/toxicidade , Canais de Potássio Shaw/biossíntese , Animais , Animais Recém-Nascidos , Apoptose/genética , Córtex Cerebral/efeitos dos fármacos , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Fenômenos Eletrofisiológicos , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Masculino , Neurônios/fisiologia , Gravidez , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Biol Chem ; 278(16): 14346-55, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12582155

RESUMO

Fibronectin (FN) is an extracellular matrix (ECM) protein involved in tumor growth and metastasis. Five human FN cDNA segments encoding for FN fragments, all starting with the II1 repeat and ending with different C-terminal extensions, have been stably expressed in chick embryo fibroblasts (CEF). These FN cDNAs induce the formation of an organized ECM in CEF as long as they retain a sequence coding for a 13-amino acid stretch (FN13), with collagen binding activity, localized between type II2 and I7 repeats. An FN13 synthetic peptide induces in control CEF the assembly of an FN-ECM comparable with that observed in CEF-expressing FN fragments. The activity of FN13 is specific for its amino acid sequence, although the cysteine present in the 6th position can be substituted with a polar serine without affecting the induction of a fibrillar FN-ECM. A less fibrillar matrix is induced by FN13-modified peptides in which the cysteine is methylated or substituted by a non-polar alanine. FN13 induces the assembly of an FN-ECM also in Rous sarcoma virus-transformed CEF lacking the ECM and in hepatoma (SK-Hep1) and fibrosarcoma (HT-1080) human cell lines. FN13 also promotes the adhesion of CEF and Rous sarcoma virus-CEF at levels comparable with those obtained with purified intact FN. Finally, FN13 inhibits the migratory and invasive properties of tumorigenic cells, whereas intact FN favors their migration. All FN13-modified peptides show similar effects, although with reduced efficiency. None of these activities is supported by a scrambled peptide. These data suggest a possible role of FN13 in tumor growth and metastasis inhibition and its possible use as anti-tumorigenic agent.


Assuntos
Matriz Extracelular/metabolismo , Fibronectinas/fisiologia , Alanina/química , Aminoácidos/química , Animais , Adesão Celular , Movimento Celular , Embrião de Galinha , Clonagem Molecular , Colágeno/química , Colágeno/metabolismo , DNA Complementar/metabolismo , Fibronectinas/química , Humanos , Hibridização In Situ , Metilação , Microscopia de Fluorescência , Peptídeos/química , Ligação Proteica , Coelhos , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA