RESUMO
Bruton's tyrosine kinase (Btk) is a nonreceptor cytoplasmic tyrosine kinase involved in B-cell and myeloid cell activation, downstream of B-cell and Fcγ receptors, respectively. Preclinical studies have indicated that inhibition of Btk activity might offer a potential therapy in autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here we disclose the discovery and preclinical characterization of a potent, selective, and noncovalent Btk inhibitor currently in clinical development. GDC-0853 (29) suppresses B cell- and myeloid cell-mediated components of disease and demonstrates dose-dependent activity in an in vivo rat model of inflammatory arthritis. It demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria. On the basis of its potency, selectivity, long target residence time, and noncovalent mode of inhibition, 29 has the potential to be a best-in-class Btk inhibitor for a wide range of immunological indications.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Cães , Descoberta de Drogas , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Células Madin Darby de Rim Canino , Modelos Moleculares , Estrutura Molecular , Piperazinas/farmacocinética , Piperazinas/toxicidade , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/toxicidade , Piridonas/farmacocinética , Piridonas/toxicidade , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-DawleyRESUMO
PURPOSE: To evaluate an alternative in vitro system which can provide more quantitatively accurate drug drug interaction (DDI) prediction for 10 protein kinase inhibitors for which DDI risk was over-predicted by inhibition data generated in human liver microsomes (HLM). METHODS: Three cryopreserved human hepatocyte (hHEP) systems: 1) plated hHEPs; 2) hHEPs suspended in Dulbecco's Modified Eagle Medium (DMEM) and 3) hHEPs suspended in human plasma (plasma hHEPs) were developed to detect CYP3A time dependent inhibition, and the static mechanistic model was used to predict clinical outcomes. RESULTS: A general trend was observed in the CYP3A inactivation potency (k inact /K I, app ) as HLM > plated > DMEM ≥ plasma hHEPs. Using the static mechanistic model, DDIs predicted using parameters estimated from plated, DMEM and plasma hHEPs had 84, 74 and 95% accuracy (out of 19 clinical interaction studies) within 2-fold of the reported interaction, respectively. They demonstrated significant improvement compared to the DDIs predicted using parameters estimated from HLMs where 58% accuracy was obtained. CONCLUSIONS: Based on 19 DDIs, plasma hHEPs demonstrate a more reliable clinical DDI prediction for 10 protein kinase inhibitors and prototypical CYP3A time dependent inhibitors.