Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 66: 126758, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857859

RESUMO

BACKGROUND: Selenium has a major role in male reproduction and antioxidative mechanisms. Although deficiency of this element can result in damages to the body's organs, this metalloid can induce deleterious effects in organisms by causing oxidative stress. This study assessed the spermatotoxicity of selenium nanoparticles (SeNPs) in goldfish (Carassius auratus) based on genotoxicity, antioxidant status, sperm quality, and histopathology. METHODS: The fish with an average weight of 70 g (n = 288) were divided into four experimental groups (three replicates) and fed three times a day with SeNPs at different levels of 0, 0.1, 0.5, and 1 mg kg diet for 30 and 60 days. RESULTS: After 30 and 60 days of feeding trial, compared to the control group, spermatocrit percentage markedly decreased at 1 mg kg SeNPs on day 30 as well as at 0.5 and 1 mg kg on day 60 (p < 0.05). Computer-assisted sperm analysis parameters especially VCL, VSL, and VAP decreased in response to SeNPs (p < 0.05). Percentage of fast speed progressive sperm cells was highest in fish fed with 0.1 mg kg SeNPs following the dietary experiment and significantly reduced in a SeNPs dose-dependent manner (p < 0.05). In addition, the levels of Malondialdehyde and Glutathione peroxidase were significantly elevated in seminal plasma of all SeNPs-treated groups (p < 0.05). On day 60, DNA damage of sperm was greatly increased at 1 mg kg SeNPs (p < 0.05). Moreover, the highest percentage of spermatocyte and spermatid were observed at the highest dose of SeNPs while the highest percentage of spermatozoa was recorded at the lowest and moderate SeNPs doses. CONCLUSION: These findings suggested that non-optimal doses of SeNPs could reduce sperm quality, induce oxidative stress, and DNA damage in sperm, and disrupt testis development.


Assuntos
Antioxidantes/toxicidade , Nanopartículas/química , Selênio/toxicidade , Espermatozoides/efeitos dos fármacos , Animais , Antioxidantes/química , Relação Dose-Resposta a Droga , Carpa Dourada , Masculino , Selênio/química , Motilidade dos Espermatozoides/efeitos dos fármacos
2.
Environ Res ; 194: 110611, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358875

RESUMO

No to less effort has been made to assess the toxicity of silver nanoparticles (AgNPs) to lipid composition in biological systems and also to discover a mitigating agent against their oxidative stress. Hence, this research evaluated the antioxidant capability of quercetin (Qu) against silver nanoparticles (AgNPs) toxicity towards the lipid contents of ovarian, nervous, and hepatic systems as well as skeletal muscles. To this end, zebrafish (n = 180) were assigned into four experimental dietary groups: negative and positive controls, without Qu supplementation; Qu-200, 200 mg Qu per kg diet; and Qu-400, 400 mg Qu per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96 h. As to the liver tissue of the positive and Qu-200 treatments, total polyunsaturated fatty acids (∑PUFA) decreased 3 times, as well as total high unsaturated fatty acids (∑HUFA) reduced about 30% and 50%, respectively. However, the brain ∑HUFA, predominated by DHA, enhanced in Qu-400 treatment. Interestingly, ∑MUFA, ∑PUFA, and ∑HUFA increased in the muscle of all treated groups, especially Qu-200 and Qu-400. The oocyte ∑MUFA content increased in the positive and Qu-200 treatments, whereas ∑HUFA reduced about 25%, 25%, and 20%, respectively, in the positive, Qu-200, and Qu-400 groups. Generally, the findings suggest that unsaturated acyl chains, particularly HUFAs, in the liver tissue and oocyte cell are highly susceptible to peroxidation or degeneration by AgNPs. More broadly, in the context of ecotoxicological risk assessment, the alteration in HUFAs and PUFAs of the liver and oocyte could impact on maternal and offspring health and consequently alter long-term population dynamics of aquatic animals.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Encéfalo , Dieta , Suplementos Nutricionais , Ácidos Graxos , Fígado , Nanopartículas Metálicas/toxicidade , Músculos , Oócitos , Quercetina/farmacologia , Prata/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA