Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Neurol ; 314: 58-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30660616

RESUMO

Acute inflammation induces sensitization of nociceptive neurons and triggers the accumulation of calcium permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the dorsal horn of the spinal cord. This coincides with behavioral signs of acute inflammatory pain, but whether CP-AMPARs contribute to chronic pain remains unclear. To evaluate this question, we first constructed current-voltage (IV) curves of C-fiber stimulus-evoked, AMPAR-mediated EPSCs in lamina II to test for inward rectification, a key characteristic of CP-AMPARs. We found that the intraplantar injection of complete Freund's adjuvant (CFA) induced an inward rectification at 3 d that persisted to 21 d after injury. Furthermore, the CP- AMPAR antagonist IEM-1460 (50 µM) inhibited AMPAR-evoked Ca2+ transients 21d after injury but had no effect in uninflamed mice. We then used a model of long-lasting vulnerability for chronic pain that is determined by the balance between latent central sensitization (LCS) and mu opioid receptor constitutive activity (MORCA). When administered 21 d after the intraplantar injection of CFA, intrathecal administration of the MORCA inverse agonist naltrexone (NTX, 1 µg, i.t.) reinstated mechanical hypersensitivity, and superfusion of spinal cord slices with NTX (10 µM) increased the peak amplitude of AMPAR-evoked Ca2+ transients in lamina II neurons. The CP-AMPAR antagonist naspm (0-10 nmol, i.t.) inhibited these NTX-induced increases in mechanical hypersensitivity. NTX had no effect in uninflamed mice. Subsequent western blot analysis of the postsynaptic density membrane fraction from lumbar dorsal horn revealed that CFA increased GluA1 expression at 2 d and GluA4 expression at both 2 and 21 d post-injury, indicating that not just the GluA1 subunit, but also the GluA4 subunit, contributes to the expression of CP-AMPARs and synaptic strength during hyperalgesia. GluA2 expression increased at 21 d, an unexpected result that requires further study. We conclude that after tissue injury, dorsal horn AMPARs retain a Ca2+ permeability that underlies LCS. Because of their effectiveness in reducing naltrexone-induced reinstatement of hyperalgesia and potentiation of AMPAR-evoked Ca2+ signals, CP-AMPAR inhibitors are a promising class of agents for the treatment of chronic inflammatory pain.


Assuntos
Cálcio/metabolismo , Dor Crônica/fisiopatologia , Receptores de AMPA/metabolismo , Receptores Opioides/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Dor Crônica/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Adjuvante de Freund , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Fibras Nervosas Amielínicas , Nociceptividade , Células do Corno Posterior/efeitos dos fármacos , Receptores de AMPA/antagonistas & inibidores , Receptores de Glutamato/metabolismo , Sinapses/efeitos dos fármacos
2.
J Neurotrauma ; 35(15): 1800-1818, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648982

RESUMO

Our previous studies reported that pharmacological maintenance of mitochondrial bioenergetics after experimental spinal cord injury (SCI) provided functional neuroprotection. Recent evidence indicates that endogenous mitochondrial transfer is neuroprotective as well, and, therefore, we extended these studies with a novel approach to transplanting exogenous mitochondria into the injured rat spinal cord. Using a rat model of L1/L2 contusion SCI, we herein report that transplantation of exogenous mitochondria derived from either cell culture or syngeneic leg muscle maintained acute bioenergetics of the injured spinal cord in a concentration-dependent manner. Moreover, transplanting transgenically labeled turbo green fluorescent (tGFP) PC12-derived mitochondria allowed for visualization of their incorporation in both a time-dependent and cell-specific manner at 24 h, 48 h, and 7 days post-injection. tGFP mitochondria co-localized with multiple resident cell types, although they were absent in neurons. Despite their contribution to the maintenance of normal bioenergetics, mitochondrial transplantation did not yield long-term functional neuroprotection as assessed by overall tissue sparing or recovery of motor and sensory functions. These experiments are the first to investigate mitochondrial transplantation as a therapeutic approach to treating spinal cord injury. Our initial bioenergetic results are encouraging, and although they did not translate into improved long-term outcome measures, caveats and technical hurdles are discussed that can be addressed in future studies to potentially increase long-term efficacy of transplantation strategies.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/transplante , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley
3.
J Pain ; 17(3): 359-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687453

RESUMO

UNLABELLED: Thiazolidinedione drugs (TZDs) such as pioglitazone are approved by the U.S. Food and Drug Administration for the treatment of insulin resistance in type 2 diabetes. However, whether TZDs reduce painful diabetic neuropathy (PDN) remains unknown. Therefore, we tested the hypothesis that chronic administration of pioglitazone would reduce PDN in Zucker Diabetic Fatty (ZDF(fa/fa) [ZDF]) rats. Compared with Zucker Lean (ZL(fa/+)) controls, ZDF rats developed: (1) increased blood glucose, hemoglobin A1c, methylglyoxal, and insulin levels; (2) mechanical and thermal hyperalgesia in the hind paw; (3) increased avoidance of noxious mechanical probes in a mechanical conflict avoidance behavioral assay, to our knowledge, the first report of a measure of affective-motivational pain-like behavior in ZDF rats; and (4) exaggerated lumbar dorsal horn immunohistochemical expression of pressure-evoked phosphorylated extracellular signal-regulated kinase. Seven weeks of pioglitazone (30 mg/kg/d in food) reduced blood glucose, hemoglobin A1c, hyperalgesia, and phosphorylated extracellular signal-regulated kinase expression in ZDF. To our knowledge, this is the first report to reveal hyperalgesia and spinal sensitization in the same ZDF animals, both evoked by a noxious mechanical stimulus that reflects pressure pain frequently associated with clinical PDN. Because pioglitazone provides the combined benefit of reducing hyperglycemia, hyperalgesia, and central sensitization, we suggest that TZDs represent an attractive pharmacotherapy in patients with type 2 diabetes-associated pain. PERSPECTIVE: To our knowledge, this is the first preclinical report to show that: (1) ZDF rats exhibit hyperalgesia and affective-motivational pain concurrent with central sensitization; and (2) pioglitazone reduces hyperalgesia and spinal sensitization to noxious mechanical stimulation within the same subjects. Further studies are needed to determine the anti-PDN effect of TZDs in humans.


Assuntos
Analgésicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/prevenção & controle , Células do Corno Posterior/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Administração Oral , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Temperatura Baixa , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas/fisiopatologia , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Temperatura Alta , Hiperalgesia/fisiopatologia , Masculino , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/fisiopatologia , Fosforilação , Pioglitazona , Células do Corno Posterior/fisiologia , Ratos Zucker , Tato
4.
Pain ; 156(3): 469-482, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25599238

RESUMO

Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal (i.t.) injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid antihyperalgesic actions of PPARγ activation, we administered pioglitazone to rats with spared nerve injury and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 minutes of injection, consistent with a nongenomic mechanism. Systemic or i.t. administration of GW9662, a PPARγ antagonist, inhibited the antihyperalgesic actions of intraperitoneal or i.t. pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of nongenomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When coadministered intrathecally, anisomycin did not change pioglitazone antihyperalgesia at an early 7.5-minute time point, further supporting a rapid nongenomic mechanism. At later time points, anisomycin reduced pioglitazone antihyperalgesia, suggesting delayed recruitment of genomic mechanisms. Pioglitazone reduction of spared nerve injury-induced increases in GFAP expression occurred more rapidly than expected, within 60 minutes. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent of canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation and through both genomic and nongenomic PPARγ mechanisms.


Assuntos
Astrócitos/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Neuralgia/tratamento farmacológico , PPAR gama/metabolismo , Tiazolidinedionas/uso terapêutico , Análise de Variância , Doenças dos Animais , Animais , Área Sob a Curva , Astrócitos/metabolismo , Capsaicina/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Injeções Intraventriculares , Masculino , Neuralgia/complicações , Neuralgia/patologia , Nociceptividade/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , Limiar da Dor/efeitos dos fármacos , Pioglitazona , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia
5.
Behav Pharmacol ; 20(8): 755-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19773645

RESUMO

Ranolazine modulates the cardiac voltage-gated sodium channel (NaV 1.5) and is approved by the FDA in the treatment of ischemic heart disease. Ranolazine also targets neuronal (NaV 1.7, 1.8) isoforms that are implicated in neuropathic pain. Therefore, we determined the analgesic efficacy of ranolazine in a preclinical animal model of neuropathic pain. Both intraperitoneal and oral administration of ranolazine dose-dependently inhibited the mechanical and cold allodynia associated with spared nerve injury, without producing ataxia or other behavioral side effects. These data warrant clinical investigation of the potential use of ranolazine in the treatment of neuropathic pain.


Assuntos
Acetanilidas/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Piperazinas/administração & dosagem , Acetanilidas/farmacologia , Acetanilidas/uso terapêutico , Animais , Ataxia/induzido quimicamente , Temperatura Baixa , Avaliação Pré-Clínica de Medicamentos , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Distribuição Aleatória , Ranolazina , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
6.
Pain ; 96(3): 353-363, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11973010

RESUMO

Inflammation induces an up-regulation of neuropeptide tyrosine (NPY) and its receptors in the dorsal horn, suggesting an important role in nociceptive transmission. Our initial studies revealed that NPY dose-dependently increased hotplate response latency, and to a lesser degree, thermal paw withdrawal latency (PWL); these effects occurred at doses that affect neither motor coordination (as assessed by the rotarod test) nor paw skin temperature. We next evaluated the behavioral effects of intrathecal administration of NPY and NPY antagonists with the aim of assessing the contribution of NPY to correlates of persistent nociception associated with the unilateral plantar injection of carrageenan or complete Freund's adjuvant (CFA). NPY robustly and dose-dependently increased PWL on the side ipsilateral to carrageenan injection, with only a small effect on the contralateral side. Similarly, NPY (30 microg) produced a large and long-lasting increase in PWL on the side ipsilateral to CFA injection (140% change), with only a small effect on the contralateral side (25% change). The ipsilateral effect of NPY was completely inhibited with the potent Y1 antagonist, BIBO 3304 (3 microg), but not the Y2 antagonist, BIIE 0246. When administered alone, BIBO 3304 (but not BIIE 0246) slightly decreased thermal PWL on the side ipsilateral (25% change), but not contralateral, to CFA injection; this suggests that inflammation strengthens inhibitory NPY tone. We conclude that spinal Y1 receptors contribute to the inhibitory effects of NPY on thermal hypersensitivity in the awake rat. Further studies are necessary to determine whether enhanced release of NPY and Y1-mediated inhibition of spinal nociceptive transmission ultimately results in a compensatory, adaptive inhibition of thermal hypersensitivity in the setting of inflammation.


Assuntos
Hiperalgesia/tratamento farmacológico , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Doença Aguda , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Temperatura Corporal/efeitos dos fármacos , Carragenina , Modelos Animais de Doenças , Adjuvante de Freund , Temperatura Alta , Hiperalgesia/induzido quimicamente , Injeções Espinhais , Masculino , Atividade Motora/efeitos dos fármacos , Inflamação Neurogênica/induzido quimicamente , Inflamação Neurogênica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA