Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMJ Open ; 14(1): e078989, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216200

RESUMO

INTRODUCTION: Uterine fibroids affect 30%-77% of reproductive-age women and are a significant cause of infertility. Surgical myomectomies can restore fertility, but they often have limited and temporary benefits, with postoperative complications such as adhesions negatively impacting fertility. Existing medical therapies, such as oral contraceptives, gonadotropin hormone-releasing hormone (GnRH) analogues and GnRH antagonists, can manage fibroid symptoms but are not fertility friendly. This study addresses the pressing need for non-hormonal, non-surgical treatment options for women with fibroids desiring pregnancy. Previous preclinical and clinical studies have shown that epigallocatechin gallate (EGCG) effectively reduces uterine fibroid size. We hypothesise that EGCG from green tea extract will shrink fibroids, enhance endometrial quality and increase pregnancy likelihood. To investigate this hypothesis, we initiated a National Institute of Child Health and Human Development Confirm-funded trial to assess EGCG's efficacy in treating women with fibroids and unexplained infertility. METHODS AND ANALYSIS: This multicentre, prospective, interventional, randomised, double-blinded clinical trial aims to enrol 200 participants with fibroids and unexplained infertility undergoing intrauterine insemination (IUI). Participants will be randomly assigned in a 3:1 ratio to two groups: green tea extract (1650 mg daily) or a matched placebo, combined with clomiphene citrate-induced ovarian stimulation and timed IUI for up to four cycles. EGCG constitutes approximately 45% of the green tea extract. The primary outcome is the cumulative live birth rate, with secondary outcomes including conception rate, time to conception, miscarriage rate, change in fibroid volume and symptom severity scores and health-related quality of life questionnaire scores. ETHICS AND DISSEMINATION: The FRIEND trial received approval from the Food and Drug adminstration (FDA) (investigational new drug number 150951), the central Institutional Review Board (IRB) at Johns Hopkins University and FRIEND-collaborative site local IRBs. The data will be disseminated at major conferences, published in peer-reviewed journals and support a large-scale clinical trial. TRIAL REGISTRATION NUMBER: NCT05364008.


Assuntos
Catequina/análogos & derivados , Infertilidade , Leiomioma , Gravidez , Criança , Feminino , Humanos , Chá , Qualidade de Vida , Estudos Prospectivos , Leiomioma/complicações , Leiomioma/tratamento farmacológico , Leiomioma/cirurgia , Infertilidade/terapia , Fertilidade , Indução da Ovulação/métodos , Hormônio Liberador de Gonadotropina/uso terapêutico , Taxa de Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
2.
Nutrients ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678191

RESUMO

A similar abstract of the interim analysis was previously published in Fertility and Sterility. EPIGALLOCATECHIN GALLATE (EGCG) FOR TREATMENT OF UNEXPLAINED INFERTILITY ASSOCIATED WITH UTERINE FIBROIDS (PRE-FRIEND TRIAL): EARLY SAFETY ASSESSMENT. Uterine fibroids are the most common cause of unexplained infertility in reproductive-aged women. Epigallocatechin gallate (EGCG), a green tea catechin, has demonstrated its ability to shrink uterine fibroids in prior preclinical and clinical studies. Hence, we developed an NICHD Confirm-funded trial to evaluate the use of EGCG for treating women with fibroids and unexplained infertility (FRIEND trial). Prior to embarking on that trial, we here conducted the pre-FRIEND study (NCT04177693) to evaluate the safety of EGCG in premenopausal women. Specifically, our aim was to assess any adverse effects of EGCG alone or in combination with an ovarian stimulator on serum liver function tests (LFTs) and folate level. In this randomized, open-label prospective cohort, participants were recruited from the FRIEND-collaborative clinical sites: Johns Hopkins University, University of Chicago, University of Illinois at Chicago, and Yale University. Thirty-nine women, ages ≥18 to ≤40 years, with/without uterine fibroids, were enrolled and randomized to one of three treatment arms: 800 mg of EGCG daily alone, 800 mg of EGCG daily with clomiphene citrate 100 mg for 5 days, or 800 mg of EGCG daily with Letrozole 5 mg for 5 days. No subject demonstrated signs of drug induced liver injury and no subject showed serum folate level outside the normal range. Hence, our data suggests that a daily dose of 800 mg of EGCG alone or in combination with clomiphene citrate or letrozole (for 5 days) is well-tolerated and is not associated with liver toxicity or folate deficiency in reproductive-aged women.


Assuntos
Catequina , Infertilidade , Leiomioma , Humanos , Feminino , Adulto , Catequina/farmacologia , Letrozol , Estudos Prospectivos , Fígado , Leiomioma/tratamento farmacológico , Clomifeno , Ácido Fólico , Chá
3.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189793

RESUMO

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.


Assuntos
Ansiolíticos , Dioxigenases , 5-Metilcitosina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Ansiolíticos/farmacologia , Cromatina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
4.
Am J Physiol Endocrinol Metab ; 292(2): E435-42, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16985261

RESUMO

HOXA10 is necessary for normal development of the Müllerian duct, and continued adult expression in the uterus is necessary for female fertility. HOXA10 expression is altered by diethylstilbestrol, leading to uterine anomalies. Other endocrine disruptors may potentially lead to reproductive anomalies or dysfunction by altering HOXA10 expression. Here we investigated the effect of isoflavones on HOXA10 expression after in utero or adult exposure in the mouse. Genistein, but not diadzein, regulated HOXA10 mRNA and protein expression in the adult mouse uterus. In contrast, in utero genistein or diadzein exposure had no lasting effect on HOXA10 expression in the exposed offspring. Reporter gene expression driven by the HOXA10 estrogen response element was increased in a dose-responsive manner by genistein, but not daidzein. Neither estrogen receptor-alpha nor estrogen receptor-beta binding to the HOXA10 estrogen response element was affected by genistein or daidzein. In utero exposure to isoflavones is unlikely to result in HOXA10-mediated developmental anomalies. Adult genistein exposure alters uterine HOXA10 expression, a potential mechanism by which this agent affects fertility.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Fitoestrógenos/farmacologia , Prenhez , Efeitos Tardios da Exposição Pré-Natal , Útero/embriologia , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Reporter/efeitos dos fármacos , Genisteína/efeitos adversos , Genisteína/farmacologia , Proteínas Homeobox A10 , Proteínas de Homeodomínio/genética , Humanos , Isoflavonas/efeitos adversos , Isoflavonas/farmacologia , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos , Fitoestrógenos/efeitos adversos , Gravidez , Prenhez/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Estrogênio/metabolismo , Elementos de Resposta/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/metabolismo
5.
Endocr Rev ; 27(4): 331-55, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16632680

RESUMO

Hox genes have a well-characterized role in embryonic development, where they determine identity along the anteroposterior body axis. Hox genes are expressed not only during embryogenesis but also in the adult, where they are necessary for functional differentiation. Despite the known function of these genes as transcription factors, few regulatory mechanisms that drive Hox expression are known. Recently, several hormones and their cognate receptors have been shown to regulate Hox gene expression and thereby mediate development in the embryo as well as functional differentiation in the adult organism. Estradiol, progesterone, testosterone, retinoic acid, and vitamin D have been shown to regulate Hox gene expression. In the embryo, the endocrine system directs axial Hox gene expression; aberrant Hox gene expression due to exposure to endocrine disruptors contributes to the teratogenicity of these compounds. In the adult, endocrine regulation of Hox genes is necessary to enable such diverse functions as hematopoiesis and reproduction; endocrinopathies can result in dysregulated HOX gene expression affecting physiology. By regulating HOX genes, hormonal signals utilize a conserved mechanism that allows generation of structural and functional diversity in both developing and adult tissues. This review discusses endocrine Hox regulation and its impact on physiology and human pathology.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Hormônios Esteroides Gonadais/fisiologia , Animais , Compostos Benzidrílicos , Dietilestilbestrol/efeitos adversos , Endométrio/metabolismo , Feminino , Hematopoese/fisiologia , Proteínas Homeobox A10 , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Integrina beta3/metabolismo , Metoxicloro/toxicidade , Fenóis/toxicidade , Fitoestrógenos/efeitos adversos , Gravidez/metabolismo , Receptores de Prostaglandina E/metabolismo , Fatores de Transcrição , Tretinoína/fisiologia , Vitamina D/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA