Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1906, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479270

RESUMO

Duchenne muscular dystrophy (DMD) is a common and severe X-linked myopathy, characterized by muscle degeneration due to altered or absent dystrophin. DMD has no effective cure, and the underlying molecular mechanisms remain incompletely understood. The aim of this study is to investigate the metabolic changes in DMD using mass spectrometry-based imaging. Nine human muscle biopsies from DMD patients and nine muscle biopsies from control individuals were subjected to untargeted MSI using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry. Both univariate and pattern recognition techniques have been used for data analysis. This study revealed significant changes in 34 keys metabolites. Seven metabolites were decreased in the Duchenne biopsies compared to control biopsies including adenosine triphosphate, and glycerophosphocholine. The other 27 metabolites were increased in the Duchenne biopsies, including sphingomyelin, phosphatidylcholines, phosphatidic acids and phosphatidylserines. Most of these dysregulated metabolites are tightly related to energy and phospholipid metabolism. This study revealed a deep metabolic remodelling in phospholipids and energy metabolism in DMD. This systems-based approach enabled exploring the metabolism in DMD in an unprecedented holistic and unbiased manner with hypothesis-free strategies.


Assuntos
Metabolômica , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Animais , Biópsia , Criança , Pré-Escolar , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/patologia , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Esfingomielinas/metabolismo
2.
Mol Syst Biol ; 16(4): e9495, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32337855

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.


Assuntos
Acetilcisteína/administração & dosagem , Carnitina/administração & dosagem , Metabolômica/métodos , Niacinamida/análogos & derivados , Serina/administração & dosagem , Acetilcisteína/sangue , Adulto , Animais , Carnitina/sangue , Suplementos Nutricionais , Quimioterapia Combinada , Voluntários Saudáveis , Humanos , Masculino , Modelos Animais , Niacinamida/administração & dosagem , Niacinamida/sangue , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Medicina de Precisão , Compostos de Piridínio , Ratos , Serina/sangue
3.
Front Nutr ; 6: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024923

RESUMO

Nutrition is an interdisciplinary science that studies the interactions of nutrients with the body in relation to maintenance of health and well-being. Nutrition is highly complex due to the underlying various internal and external factors that could model it. Thus, hacking this complexity requires more holistic and network-based strategies that could unveil these dynamic system interactions at both time and space scales. The ongoing omics era with its high-throughput molecular data generation is paving the way to embrace this complexity and is deeply reshaping the whole field of nutrition. Understanding the future paths of nutrition science is of importance from both translational and clinical perspectives. Basic nutrients which might include metabolites are important in nutrition science. Moreover, metabolites are key biological communication channels and represent an appealing functional readout at the interface of different major influential factors that define health and disease. Metabolomics is the technology that enables holistic and systematic analyses of metabolites in a biological system. Hence, given its intrinsic functionality, its tight connection to metabolism and its high clinical actionability potential, metabolomics is a very appealing technology for nutrition science. The ultimate goal is to deliver a tailored and clinically relevant nutritional recommendations and interventions to achieve precision nutrition. This work intends to present an update on the applications of metabolomics to personalize nutrition in translational and clinical settings. It also discusses the current conceptual shifts that are remodeling clinical nutrition practices in this Precision Medicine era. Finally, perspectives of clinical nutrition in the ever-growing, data-driven healthcare landscape are presented.

4.
Int J Mol Sci ; 17(9)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649151

RESUMO

The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.


Assuntos
Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Medicina de Precisão/métodos , Biologia de Sistemas/métodos , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Erros Inatos do Metabolismo/diagnóstico , Metabolômica/métodos , Medicina de Precisão/tendências , Proteômica/métodos , Sensibilidade e Especificidade , Biologia de Sistemas/tendências
5.
Metab Brain Dis ; 31(6): 1435-1443, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27438048

RESUMO

Pyridoxine-dependent epilepsy (PDE) is a pharmacoresistant epileptogenic encephalopathy controlled by pyridoxine supplementation at pharmacological doses. Despite supplementation, the long-term outcome is often poor possibly because of recurrent seizures and developmental structural brain abnormalities. We report on five patients with PDE from three unrelated families. The diagnosis was confirmed by ALDH7A1 sequencing, which allowed for the characterization of two homozygous variations [NM_001182.3:c.1279G > C - p.(Glu427Gln) and c.834G > A - p.(Val278Val)]. Brain autopsy was conducted for one untreated patient with molecularly confirmed antiquitin deficiency. Macroscopic and histological examination revealed a combination of lesions resulting from recurrent seizures and consisting of extensive areas of cortical necrosis, gliosis, and hippocampic sclerosis. The examination also revealed developmental abnormalities including corpus callosum dysgenesis and corticospinal pathfinding anomalies. This case is the second to be reported in the literature, and our findings show evidence that antiquitin is required for normal brain development and functioning. Despite prophylactic prenatal pyridoxine supplementation during the last trimester of pregnancy in one of the three families and sustained pyridoxine treatment in three living patients, the clinical outcome remained poor with delayed acquisition of neurocognitive skills. Combined therapy (pyridoxine/arginine supplementation and lysine-restricted diet) should be considered early in the course of the disease for a better long-term outcome. Enhanced knowledge of PDE features is required to improve treatment strategies.


Assuntos
Epilepsia/genética , Epilepsia/patologia , Criança , Pré-Escolar , Suplementos Nutricionais , Epilepsia/dietoterapia , Evolução Fatal , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Piridoxina/administração & dosagem
6.
Int J Mol Sci ; 17(7)2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27447622

RESUMO

Inborn errors of metabolism (IEM) represent a group of about 500 rare genetic diseases with an overall estimated incidence of 1/2500. The diversity of metabolic pathways involved explains the difficulties in establishing their diagnosis. However, early diagnosis is usually mandatory for successful treatment. Given the considerable clinical overlap between some inborn errors, biochemical and molecular tests are crucial in making a diagnosis. Conventional biological diagnosis procedures are based on a time-consuming series of sequential and segmented biochemical tests. The rise of "omic" technologies offers holistic views of the basic molecules that build a biological system at different levels. Metabolomics is the most recent "omic" technology based on biochemical characterization of metabolites and their changes related to genetic and environmental factors. This review addresses the principles underlying metabolomics technologies that allow them to comprehensively assess an individual biochemical profile and their reported applications for IEM investigations in the precision medicine era.


Assuntos
Genômica , Erros Inatos do Metabolismo/metabolismo , Metabolômica/métodos , Humanos , Erros Inatos do Metabolismo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA