Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 172: 113167, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689920

RESUMO

Coffee "body" is acknowledged by coffee industry professionals to be an attribute which contributes meaningfully to overall coffee quality and is defined as the collective tactile sensation imparted by the beverage. Currently, there is limited knowledge of the chemical compounds that contribute to tactile attributes in coffee. In the present work, coffee body was determined to be comprised of 4 sub-attributes including mouthcoating, astringency, chalkiness, and thickness and the specific constituents contributing to the tactile sensation of mouthcoating were further pursued using sensory-guided fractionation via preparative-scale liquid chromatography. Signal detection-based sensory methodologies were employed to characterize the sensory effects elicited by selected compounds in water and coffee matrices. Two chlorogenic acids, 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were observed to impart subtle but significantly perceptible mouthcoating effects in water and/or coffee. Counterintuitively, sensory perception was inversely related to compound concentration. Complex receptor-ligand interactions or salivary lubrication dynamics are discussed as two potential mechanisms to explain this inverse relationship. Taken together, the outcomes of the present study (1) provide new targets for coffee tactile sensation optimization and modulation, (2) identify a novel dimension of sensory impact for two compounds of the chlorogenic acid family, and (3) present a need for deeper investigation into 3-CQA and 4-CQA mechanisms of sensation.


Assuntos
Café , Percepção do Tato , Ácido Clorogênico , Tato , Água
2.
Food Chem ; 415: 135674, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36868066

RESUMO

The bitterness perception of coffee is a key attribute that impacts consumer acceptance. Nontargeted liquid chromatography/mass spectrometry (LC/MS) flavoromics analysis was applied to identify compounds that enhance the bitter perception of roasted coffee brew. Orthogonal partial least squares (OPLS) analysis was used to model the comprehensive chemical profiles and sensory bitter intensity ratings of fourteen coffee brews with good fit and predictivity. Five compounds that were highly predictive and positively correlated to bitter intensity were selected from the OPLS model, further isolated, and purified using preparative LC fractionation. Sensory recombination testing demonstrated that five compounds significantly enhanced the bitter perception of coffee when presented as a mixture, but not when presented individually. In addition, a set of roasting experiments revealed the five compounds were generated during the coffee roasting process.


Assuntos
Café , Paladar , Paladar/fisiologia , Café/química , Análise dos Mínimos Quadrados , Cromatografia Líquida
3.
Food Chem ; 395: 133555, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35763924

RESUMO

Flavor instability of ready-to-drink (RTD) coffee during storage negatively impacts product quality. Untargeted liquid chromatography/mass spectrometry (LC/MS) analysis was applied to identify chemical compounds that degraded during storage and impacted the flavor attributes of RTD coffee. LC/MS chemical profiles of non-aged and aged coffee samples were modeled against the degree of difference sensory scores by orthogonal partial least squares with good fit (R2Y = 0.966) and predictive ability (Q2 = 0.960). The top five predictive chemical features were subsequently purified by off-line multidimensional Prep-LC, revealing ten coeluting chlorogenic acid lactones (CGLs) compounds that were identified by LC/MS and nuclear magnetic resonance (NMR). The concentrations of eight CGLs significantly decreased in the coffee during the 4-month storage. Sensory recombination testing revealed the degradation of 3-O-caffeoyl-É£-quinide and 4-O-caffeoyl-É£-quinide significantly impacted the flavor stability of RTD coffee at subthreshold concentrations.


Assuntos
Ácido Clorogênico , Café , Ácido Clorogênico/análise , Cromatografia Líquida , Café/química , Lactonas/análise , Espectrometria de Massas
4.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408521

RESUMO

Coffee brew flavor is known to degrade during storage. Untargeted and targeted LC/MS flavoromics analysis was applied to identify chemical compounds generated during storage that impacted the flavor stability of ready-to-drink (RTD) coffee. MS chemical profiles for sixteen RTD coffee samples stored for 0, 1, 2, and 4 months at 30 °C were modeled against the sensory degree of difference (DOD) scores by orthogonal partial least squares (OPLS) with good fit and predictive ability. Five highly predictive untargeted chemical features positively correlated to DOD were subsequently identified as 3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic acid, 3-O-feruloylquinic acid, and 5-O-feruloylquinic acid. The increase in the six acidic compounds during storage was confirmed by sensory recombination tests to significantly impact the flavor stability of RTD coffee during storage. A decrease in pH, rather than an increase in total acidity, was supported to impact the coffee flavor profile.


Assuntos
Café , Paladar , Cromatografia Líquida , Café/química , Análise dos Mínimos Quadrados , Espectrometria de Massas
5.
Food Chem ; 350: 129225, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592365

RESUMO

Untargeted LC-MS flavoromic profiling was utilized to identify compounds that suppress bitterness perception of coffee brew. The chemical profiles of fourteen brew samples and corresponding perceived bitterness intensities determined by descriptive sensory analysis were modeled by orthogonal partial least squares (OPLS) with good fit (R2Y > 0.9) and predictive ability (Q2 > 0.9). Ten chemical markers that were highly predictive and negatively correlated to bitter intensity were subsequently purified by multi-dimensional preparative LC-MS to conduct sensory recombination testing and/or confirm compound identifications by NMR. Three of the ten compounds evaluated, namely 4-caffeoylquinic acid, 5-caffeoylquinic acid, and 2-O-ß-d-glucopyranosyl-atractyligenin were identified as bitter modulators in coffee, and significantly decreased the perceived bitterness intensity of the brew.


Assuntos
Café/química , Análise de Alimentos , Paladar , Humanos , Análise dos Mínimos Quadrados
6.
J Agric Food Chem ; 68(38): 10424-10431, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32172556

RESUMO

Untargeted liquid chromatography/mass spectrometry (LC/MS) flavoromics analysis was carried out on 18 coffee brews ranging in Specialty Coffee Association (SCA) cup scores. Six compounds highly predictive of low cup score were isolated from coffee using multidimensional preparative LC/MS and further evaluated by sensory recombination analysis with certified SCA quality graders. A significant decrease in cup score was demonstrated with four of the six compounds when added to a specialty coffee brew. High-resolution mass spectrometry and mono- and bidimensional nuclear magnetic resonance experiments were used to successfully elucidate four of the structures as 16α,17-dihydroxy-ent-kauran-19-oic acid (compound 1), its diglycosidic compound 16α,17-dihydroxy-ent-kauran-19-diglycoside (compound 2), 16α,17,18-trihydroxy-ent-kauran-19-oic acid (compound 5), and 16α-hydroxy-17-ent-kauren-19-oic acid (compound 6). All four ent-kaurane diterpene compounds were endogenous to green coffee beans, providing direct chemical indicators of low-quality coffee.


Assuntos
Coffea/química , Café/química , Aromatizantes/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA