Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474368

RESUMO

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Agmatina/metabolismo , Animais , Caenorhabditis elegans/microbiologia , Proteína Receptora de AMP Cíclico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Nutrientes/metabolismo
2.
Biogerontology ; 17(4): 771-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27040825

RESUMO

Human longevity continues to increase world-wide, often accompanied by decreasing birth rates. As a larger fraction of the population thus gets older, the number of people suffering from disease or disability increases dramatically, presenting a major societal challenge. Healthy ageing has therefore been selected by EU policy makers as an important priority ( http://www.healthyageing.eu/european-policies-and-initiatives ); it benefits not only the elderly but also their direct environment and broader society, as well as the economy. The theme of healthy ageing figures prominently in the Horizon 2020 programme ( https://ec.europa.eu/programmes/horizon2020/en/h2020-section/health-demographic-change-and-wellbeing ), which has launched several research and innovation actions (RIA), like "Understanding health, ageing and disease: determinants, risk factors and pathways" in the work programme on "Personalising healthcare" ( https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/693-phc-01-2014.html ). Here we present our research proposal entitled "ageing with elegans" (AwE) ( http://www.h2020awe.eu/ ), funded by this RIA, which aims for better understanding of the factors causing health and disease in ageing, and to develop evidence-based prevention, diagnostic, therapeutic and other strategies. The aim of this article, authored by the principal investigators of the 17 collaborating teams, is to describe briefly the rationale, aims, strategies and work packages of AwE for the purposes of sharing our ideas and plans with the biogerontological community in order to invite scientific feedback, suggestions, and criticism.


Assuntos
Envelhecimento/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Estilo de Vida Saudável/fisiologia , Longevidade/fisiologia , Modelos Animais , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA