Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 151: 188-200, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29223352

RESUMO

The ATP binding cassette transporter ABCA2 is primarily an endolysosomal membrane protein that demonstrates pleiotropic functionalities, coalescing around the maintenance of homeostasis of sterols, sphingolipids and cholesterol. It is most highly expressed in brain tissue and ABCA2 knockout mice express neurological defects consistent with aberrant myelination. Increased expression of the transporter has been linked with resistance to cancer drugs, particularly those possessing a steroid backbone and gene expression (in concert with other genes involved in cholesterol metabolism) was found to be regulated by sterols. Moreover, in macrophages ABCA2 is influenced by sterols and has a role in regulating cholesterol sequestration, potentially important in cardiovascular disease. Accumulating data indicate the critical importance of ABCA2 in mediating movement of sphingolipids within cellular compartments and these have been implicated in various aspects of cholesterol trafficking. Perhaps because the functions of ABCA2 are linked with membrane building blocks, there are reports linking it with human pathologies, including, cholesterolemias and cardiovascular disease, Alzheimer's and cancer. The present review addresses whether there is now sufficient information to consider ABCA2 as a plausible therapeutic target.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Doenças Cardiovasculares/metabolismo , Descoberta de Drogas , Hipercolesterolemia/metabolismo , Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/tratamento farmacológico , Animais , Doenças Cardiovasculares/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipercolesterolemia/tratamento farmacológico , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Polimorfismo de Nucleotídeo Único
2.
Adv Cancer Res ; 136: 259-302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29054421

RESUMO

In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neovascularização Patológica/tratamento farmacológico
3.
Adv Cancer Res ; 136: xi-xiv, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29054424
4.
J Pharmacol Exp Ther ; 358(2): 199-208, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27255112

RESUMO

ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Isoflavonas/farmacologia , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA