Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 314: 137702, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587913

RESUMO

This study aims to investigate the spatiotemporal trends and impact of COVID-19 lockdowns to the profile of physiochemical parameters in the influent of wastewater treatment plants (WWTPs) around Brisbane, Australia. One 24-hr composite influent sample was collected from 10 WWTPs and analyzed for a range of physiochemical parameters per week (i.e., chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), ammonia, volatile suspended solid (VSS)) and per month (i.e., Ni and Cr) from 2012 to 2020, including the period of COVID-19 lockdowns in the region. The catchments studied were urban, with a mix of domestic and industrial activities contributing towards the contaminant profile. Statistical analysis identified that industrial and commercial land use, as well as population size had a large impact to the parameter loads and profile. Per capita mass loads of Cr in one catchment were 100 times higher than in others from one industrial point source. TP demonstrated a potential monotonic decrease over time due to practical reduction policies that have been implemented for phosphorous content in household detergents, except for one catchment where trade waste from food manufacturing industries contributed to an overall increase of 6.9%/year TP. The COVID-19 lockdown (March-April 2020) posed different impact on different catchments, either decrease (7-61%) or increase (2-40%) of most parameter loads (e.g., COD, TOC, TN, TP, VSS, Ammonia), which was likely driven by catchment characteristics (i.e., the proportion of residential, commercial, and industrial land uses). This study enhances our understanding of spatiotemporal trend of contaminants in the catchments for further effective source control.


Assuntos
COVID-19 , Esgotos , Humanos , Amônia/análise , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Austrália , Nitrogênio/análise , Fósforo/análise , Eliminação de Resíduos Líquidos
2.
Sci Total Environ ; 645: 393-400, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029118

RESUMO

Pharmaceutical manufacturers in Vietnam are producing a wide variety of antibiotics for human and veterinary use. Consequently, the water discharged from those facilities can contain residues of antibiotics, which could have adverse impact on the environment. However, studies on the occurrence of antibiotics in the wastewater from pharmaceutical manufacturers in Vietnam are almost non-existent. In this study, water samples were collected at around the outlets of four pharmaceutical manufacturing plants as well as from a hospital and an aquaculture farm around Hanoi in 2016 and 2017. Fifteen antibiotics from four major classes (ß-lactam, quinolones, macrolides, sulfonamides) were monitored, using a validated LC-MS/MS method, based on their number of registrations at the Ministry of Health. Ten antibiotics, ampicillin, cefuroxime, cefotaxime, clarithromycin, azithromycin, sulfamethoxazole, trimethoprim, ofloxacin, norfloxacin, and ciprofloxacin were detected in the samples at different concentrations. Notably, sulfonamides and quinolones were occasionally detected at very high concentration, such as sulfamethoxazole (252 µg/L), trimethoprim (107 µg/L), ofloxacin (85 µg/L), and ciprofloxacin (41 µg/L). In this study, concentrations of antibiotic residues in effluent of pharmaceutical plants were higher than those from other sources. The antibiotic-resistance tests indicated the widespread resistance to common antibiotics like quinolone and sulfonamides in the collected samples. This finding suggests that wastewater from pharmaceutical manufacturers could be an important source of antibiotics and antibiotic-resistant bacteria in the aquatic environment of Vietnam.


Assuntos
Antibacterianos/análise , Farmacorresistência Bacteriana/genética , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Bactérias , Humanos , Preparações Farmacêuticas , Vietnã , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA