Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 36(11): 109701, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525352

RESUMO

Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.


Assuntos
Citratos/metabolismo , Nutrientes/metabolismo , Simportadores/metabolismo , Acetilcoenzima A/metabolismo , Adulto , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Edição de Genes , Glutamina/metabolismo , Glutamina/farmacologia , Humanos , Lipogênese , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Neurônios/citologia , Neurônios/metabolismo , Nutrientes/farmacologia , Ratos , Simportadores/deficiência , Simportadores/genética , Zinco/farmacologia
2.
J Nutr ; 150(Suppl 1): 2588S-2592S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000165

RESUMO

Histidine is a nutritionally essential amino acid with many recognized benefits to human health, while circulating concentrations of histidine decline in pathologic conditions [e.g., chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD)]. The purpose of this review is to examine the existing literature regarding the benefits of histidine intake, the adverse effects of excess histidine, and the upper tolerance level for histidine. Supplementation with doses of 4.0-4.5 g histidine/d and increased dietary histidine intake are associated with decreased BMI, adiposity, markers of glucose homeostasis (e.g., HOMA-IR, fasting blood glucose, 2-h postprandial blood glucose), proinflammatory cytokines, and oxidative stress. It is unclear from the limited number of studies in humans whether the improvements in glucoregulatory markers, inflammation, and oxidative stress are due to reduced BMI and adiposity, increased carnosine (a metabolic product of histidine with antioxidant effects), or both. Histidine intake also improves cognitive function (e.g., reduces appetite, anxiety, and stress responses and improves sleep) potentially through the metabolism of histidine to histamine; however, this relation is ambiguous in humans. At high intakes of histidine (>24 g/d), studies report adverse effects of histidine such as decreased serum zinc and cognitive impairment. There is limited research on the effects of histidine intake at doses between 4.5 and 24 g/d, and thus, a tolerable upper level has not been established. Determining tolerance to histidine supplementation has been limited by small sample sizes and, more important, a lack of a clear biomarker for histidine supplementation. The U-shaped curve of circulating zinc concentrations with histidine supplementation could be exploited as a relevant biomarker for supplemental histidine tolerance. Histidine is an important amino acid and may be necessary as a supplement in some populations; however, gaps in knowledge, which this review highlights, need to be addressed scientifically.


Assuntos
Glicemia/metabolismo , Índice de Massa Corporal , Suplementos Nutricionais , Histidina/farmacologia , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/efeitos adversos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carnosina/metabolismo , Deficiências Nutricionais/tratamento farmacológico , Deficiências Nutricionais/etiologia , Deficiências Nutricionais/metabolismo , Histamina/metabolismo , Histidina/efeitos adversos , Histidina/metabolismo , Histidina/uso terapêutico , Humanos , Inflamação/prevenção & controle , Processos Mentais/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/prevenção & controle , Zinco/deficiência
3.
Am J Clin Nutr ; 112(5): 1358-1367, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32766885

RESUMO

BACKGROUND: Histidine is an essential amino acid with health benefits that may warrant histidine supplementation; however, the clinical safety of histidine intake above the average dietary intake (1.52-5.20 g/d) needs to be vetted. OBJECTIVES: We aimed to determine the tolerance to graded dosages of histidine in a healthy adult population. METHODS: Healthy adults aged 21-50 y completed graded dosages of histidine supplement (4, 8, and 12 g/d, Study 1) (n = 20 men and n = 20 women) and/or a 16-g/d dosage of histidine (Study 2, n = 21 men and n = 19 women); 27 participants (n = 12 men and n = 15 women) completed both studies. After study enrollment and baseline measures, participants consumed encapsulated histidine for 4 wk followed by a 3-wk recovery period. Primary outcomes included vitals, select biochemical analytes, anthropometry, serum zinc, and body composition (via DXA). RESULTS: No changes in vitals or body composition occurred with histidine supplementation in either study. Plasma histidine (measured in subjects who completed all dosages for Studies 1 and 2) was elevated at the 12- and 16-g/d dosages (compared with 0-8 g/d, P < 0.05) and blood urea nitrogen increased with dosage (P = 0.013) and time (P < 0.001) in Study 1 and with time in Study 2 (P < 0.001). In Study 1, mean ferritin concentrations were lower in 12 g/d (46.0 ng/mL; 95% CI: 34.8, 60.9 ng/mL) than in 4 g/d (51.6 ng/mL; 95% CI: 39.0, 68.4 ng/mL; P = 0.038). In Study 2, 16 g/d increased mean aspartate aminotransferase from baseline (19 U/L; 95% CI: 17, 22 U/L) to week 4 (24 U/L; 95% CI: 21, 27 U/L; P < 0.001) and mean serum zinc decreased from baseline (0.75 µg/dL; 95% CI: 0.71, 0.80 µg/dL) to week 4 (0.70 µg/dL; 95% CI: 0.66, 0.74 µg/dL; P = 0.011). CONCLUSIONS: Although values remained within the normal reference ranges for all analytes measured, in all dosages tested, the human no-observed adverse effect level was determined to be 8 g/d owing to changes in blood parameters at the 12-g/d dosage.This trial was registered at clinicaltrials.gov as NCT04142294.


Assuntos
Histidina/farmacologia , Adulto , Glicemia/efeitos dos fármacos , Proteína C-Reativa , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Histidina/administração & dosagem , Histidina/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Front Biosci (Elite Ed) ; 8(2): 326-50, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709665

RESUMO

Life expectancy in the U.S. and globally continues to increase. Despite increased life expectancy quality of life is not enhanced, and older adults often experience chronic age-related disease and functional disability, including frailty. Additionally, changes in body composition such as the involuntary loss of skeletal muscle mass (i.e. sarcopenia) and subsequent increases in adipose tissue can augment disease and disability in this population. Furthermore, increased oxidative stress and decreased antioxidant concentrations may also lead to metabolic dysfunction in older adults. Specific amino acids, including leucine, cysteine and its derivative taurine, and arginine can play various roles in healthy aging, especially in regards to skeletal muscle health. Leucine and arginine play important roles in muscle protein synthesis and cell growth while cysteine and arginine play important roles in quenching oxidative stress. Evidence suggests that supplemental doses of each of these amino acids may improve the aging phenotype. However, additional research is required to establish the doses required to achieve positive outcomes in humans.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/fisiologia , Músculo Esquelético/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA