RESUMO
Migraines are a common neurological disorder characterized by desperate throbbing unilateral headaches and are related to phonophobia, photophobia, nausea, and vomiting. The Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma herb pair (ALHP) has been used to treat migraines for centuries in traditional Chinese medicine (TCM). However, the physiological mechanisms of migraine treatment have not yet been elucidated. In this study, a total of 50 hub targets related to the effect of 28 bioactive compounds in ALHP on anti-migraine were obtained through network pharmacology analysis. GO and KEGG analyses of the hub targets demonstrated that ALHP treatment of migraines significantly involved the G-protein-coupled receptor signaling pathway, chemical synaptic transmission, inflammatory response, and other biological processes. According to the degree of gene targets in the network, ACE, SLC3A6, NR3CI, MAPK1, PTGS2, PIK3CA, RELA, GRIN1, GRM5, IL1B, and DRD2 were found to be the core gene targets. The docking results showed a high affinity for docked conformations between compounds and predicted targets. The results of this study suggest that ALHP could treat migraines by regulating immunological functions, diminishing inflammation, and improving immunity through different physiological pathways, which contributes to the scientific base for more in-depth research as well as for a more widespread clinical application of ALHP.
RESUMO
Using various chromatographic techniques, a total of 15 compounds, including one novel megastigmane named tiliaceic acid A (1) and 14 known compounds, were isolated from the traditional medicinal Vietnamese mangrove Hibiscus tiliaceus. Their structures were confirmed based on spectroscopic experiments including, UV, 1 D- and 2 D-NMR, HR-ESI-MS, and ECD analysis. The antioxidant and α-glucosidase inhibitory activities of the isolated compounds from H. tiliaceus were evaluated for the first time. Compound 2 showed strong α-glucosidase inhibitory activity with an IC50 of 77.78 ± 1.00 µM compared with the positive control acarbose at 105.71 ± 2.29 µM.