Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Int ; 142: 104907, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220388

RESUMO

Cannabinoids have been shown to protect the retina from ischemic/excitotoxic insults. The aim of the present study was to investigate the neuroprotective and anti-inflammatory properties of the synthetic cannabinoid (R)-WIN55,212-2 (CB1/CB2 receptor agonist) when administered acutely or subchronically in control and AMPA treated retinas. Sprague-Dawley rats were intravitreally administered (acutely) with vehicle or AMPA, in the absence or presence of (R)-WIN55,212-2 (10-7-10-4M) alone or in combination with AM251 [CB1 receptor antagonist/inverse agonist,10-4M] and AM630 (CB2 receptor antagonist,10-4M). In addition, AMPA was co-administered with the racemic (R,S)-WIN55,212 (10-4Μ). (R)-WIN55,212-2 was also administered subchronically (25,100 µg/kg,i.p.,4d) in control and AMPA treated rats. Immunohistochemical studies were performed using antibodies against the CB1R, and retinal markers for retinal neurons (brain nitric oxide synthetase, bNOS) and microglia (ionized calcium binding adaptor molecule 1, Iba1). ELISA assay was employed to assess TNFα levels in AMPA treated retinas. Intravitreal administration of (R)-WIN55,212-2 reversed the AMPA induced loss of bNOS expressing amacrine cells, an effect that was blocked by both AM251 and AM630. (R,S)WIN55,212 had no effect. (R)-WIN55,212-2 also reduced a) the AMPA induced activation of microglia, by activating CB2 receptors that were shown to be colocalized with Iba1+ reactive microglial cells, and b) TNFα levels in retina. (R)-WIN55,212-2 administered subchronically led to the downregulation of CB1 receptors at the high dose of 100 µg/kg(i.p.), and to the attenuation of the WIN55,212-2 induced neuroprotection of amacrine cells. At the same dose, (R)-WIN55,212-2 did not attenuate the AMPA induced increase in the number of reactive microglia cells, suggesting CB2 receptor downregulation under subchronic conditions. This study provides new findings regarding the role of CB1 and CB2 receptor activation by the synthetic cannabinoid (R)-WIN55,212-2, administered acutely or sub-chronically, on neuron viability and microglia activation in healthy and diseased retina.


Assuntos
Anti-Inflamatórios/administração & dosagem , Benzoxazinas/administração & dosagem , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Retina/metabolismo , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Retina/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
2.
Neural Plast ; 2016: 8373020, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881135

RESUMO

The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease.


Assuntos
Canabinoides/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Animais , Canabinoides/administração & dosagem , Canabinoides/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Glaucoma/metabolismo , Humanos , Pressão Intraocular/efeitos dos fármacos , Fármacos Neuroprotetores , Receptores de Canabinoides/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA