RESUMO
Bed nucleus of the stria terminalis (BNST) neurons that synthesize corticotropin-releasing factor (CRF) drive binge alcohol drinking and anxiety. Here, we found that female C57BL/6J mice binge drink more than males and have greater basal BNSTCRF neuron excitability and synaptic excitation. We identified a dense VGLUT2 + synaptic input from the paraventricular thalamus (PVT) that releases glutamate directly onto BNSTCRF neurons but also engages a large BNST interneuron population to ultimately inhibit BNSTCRF neurons, and this polysynaptic PVTVGLUT2-BNSTCRF circuit is more robust in females than males. Chemogenetic inhibition of the PVTBNST projection promoted binge alcohol drinking only in female mice, while activation reduced avoidance behavior in both sexes. Lastly, repeated binge drinking produced a female-like phenotype in the male PVT-BNSTCRF excitatory synapse without altering the function of PVTBNST neurons per se. Our data describe a complex, feedforward inhibitory PVTVGLUT2-BNSTCRF circuit that is sex-dependent in its function, behavioral roles, and alcohol-induced plasticity.
Assuntos
Consumo de Bebidas Alcoólicas/patologia , Aprendizagem da Esquiva , Hormônio Liberador da Corticotropina/metabolismo , Sistema Límbico/patologia , Neurônios/patologia , Sinapses/patologia , Tálamo/patologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Potenciais Pós-Sinápticos Excitadores , Feminino , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores , Integrases/metabolismo , Sistema Límbico/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Núcleos Septais/patologia , Núcleos Septais/fisiopatologia , Caracteres Sexuais , Tálamo/fisiopatologiaRESUMO
Serotonin (also known as 5-hydroxytryptamine (5-HT)) is a neurotransmitter that has an essential role in the regulation of emotion. However, the precise circuits have not yet been defined through which aversive states are orchestrated by 5-HT. Here we show that 5-HT from the dorsal raphe nucleus (5-HTDRN) enhances fear and anxiety and activates a subpopulation of corticotropin-releasing factor (CRF) neurons in the bed nucleus of the stria terminalis (CRFBNST) in mice. Specifically, 5-HTDRN projections to the BNST, via actions at 5-HT2C receptors (5-HT2CRs), engage a CRFBNST inhibitory microcircuit that silences anxiolytic BNST outputs to the ventral tegmental area and lateral hypothalamus. Furthermore, we demonstrate that this CRFBNST inhibitory circuit underlies aversive behaviour following acute exposure to selective serotonin reuptake inhibitors (SSRIs). This early aversive effect is mediated via the corticotrophin-releasing factor type 1 receptor (CRF1R, also known as CRHR1), given that CRF1R antagonism is sufficient to prevent acute SSRI-induced enhancements in aversive learning. These results reveal an essential 5-HTDRNâCRFBNST circuit governing fear and anxiety, and provide a potential mechanistic explanation for the clinical observation of early adverse events to SSRI treatment in some patients with anxiety disorders.
Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Medo/fisiologia , Serotonina/metabolismo , Tálamo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiedade/induzido quimicamente , Transtornos de Ansiedade/induzido quimicamente , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Medo/efeitos dos fármacos , Feminino , Fluoxetina/efeitos adversos , Fluoxetina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tálamo/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismoRESUMO
It was recently reported that activation of a subset of lateral hypothalamus (LH) GABAergic neurons induced both appetitive (food-seeking) and consummatory (eating) behaviors in vGat-ires-cre mice, while inhibition or deletion of GABAergic neurons blunted these behaviors. As food and caloric-dense liquid solutions were used, the data reported suggest that these LH GABAergic neurons may modulate behaviors that function to maintain homeostatic caloric balance. Here we report that chemogenetic activation of this GABAergic population in vGat-ires-cre mice increased consummatory behavior directed at any available stimulus, including those entailing calories (food, sucrose, and ethanol), those that do not (saccharin and water), and those lacking biological relevance (wood). Chemogenetic inhibition of these neurons attenuated consummatory behaviors. These data indicate that LH GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli.
Assuntos
Comportamento Consumatório/fisiologia , Neurônios GABAérgicos/fisiologia , Hipotálamo/fisiopatologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Bulimia/fisiopatologia , Ingestão de Líquidos/fisiologia , Ingestão de Energia/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Alimentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Binge ethanol drinking is a highly pervasive and destructive behavior yet the underlying neurobiological mechanisms remain poorly understood. Recent work suggests that overlapping neurobiological mechanisms modulate feeding disorders and excessive ethanol intake, and converging evidence indicates that the melanocortin (MC) system may be a promising candidate. The aims of the present work were to examine how repeated binge-like ethanol drinking, using the 'drinking in the dark' (DID) protocol, impacts key peptides within the MC system and if site-specific manipulation of MC receptor (MCR) signaling modulates binge-like ethanol drinking. Male C57BL/6J mice were exposed to one, three or six cycles of binge-like ethanol, sucrose or water drinking, after which brain tissue was processed via immunohistochemistry (IHC) for analysis of key MC peptides, including alpha-melanocyte stimulating hormone (α-MSH) and agouti-related protein (AgRP). Results indicated that α-MSH expression was selectively decreased, while AgRP expression was selectively increased, within specific hypothalamic subregions following repeated binge-like ethanol drinking. To further explore this relationship, we used site-directed drug delivery techniques to agonize or antagonize MCRs within the lateral hypothalamus (LH). We found that the nonselective MCR agonist melanotan-II (MTII) blunted, while the nonselective MCR antagonist AgRP augmented, binge-like ethanol consumption when delivered into the LH. As these effects were region-specific, the present results suggest that a more thorough understanding of the MC neurocircuitry within the hypothalamus will help provide novel insight into the mechanisms that modulate excessive binge-like ethanol intake and may help uncover new therapeutic targets aimed at treating alcohol abuse disorders.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Hipotálamo/efeitos dos fármacos , Receptores de Melanocortina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacosRESUMO
Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in the limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kgi.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge-like ethanol exposure during adolescence may contribute to excessive ethanol consumption during adulthood.
Assuntos
Fatores Etários , Tonsila do Cerebelo/efeitos dos fármacos , Etanol/administração & dosagem , Hipotálamo/efeitos dos fármacos , alfa-MSH/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Etanol/sangue , Etanol/farmacologia , Hipotálamo/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Binge alcohol exposure impairs hepatic insulin action by blunting insulin receptor signaling in the brain and enables the identification of a therapeutic target that may help treat alcohol-induced insulin resistance (Lindtner et al., this issue).
Assuntos
Consumo Excessivo de Bebidas Alcoólicas/patologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Resistência à Insulina , Insulina/farmacologia , Animais , Feminino , HumanosRESUMO
The Melanocortin (MC) system is one of the crucial neuropeptidergic systems that modulate energy balance. The roles of endogenous MC and MC-4 receptor (MC4-R) signaling within the hypothalamus in the control of homeostatic aspects of feeding are well established. Additional evidence points to a key role for the central MC system in ethanol consumption. Recently, we have shown that nucleus accumbens (NAc), but not lateral hypothalamic (LH), infusion of a selective MC4-R agonist decreases ethanol consumption. Given that MC signaling might contribute to non-homeostatic aspects of feeding within limbic circuits, we assessed here whether MC4-R signaling within the NAc and the lateral hypothalamus (LH) alters normal ingestive hedonic and/or aversive responses to ethanol in rats as measured by a taste reactivity test. Adult male Sprague-Dawley rats were given NAc- or LH- bilateral infusion of the selective MC4-R agonist cyclo (NH-CH(2)-CH(2)-CO-His-D-Phe-Arg-Trp-Glu)-NH(2) (0, 0.75 or 1.5µg/0.5µl/site) and following 30 min, the animals received 1 ml of ethanol solution (6% w/v) intraoral for 1 minute and aversive and hedonic behaviors were recorded. We found that NAc-, but not LH-administration, of a selective MC4-R agonist decreased total duration of hedonic reactions and significantly increased aversive reactions relative to saline-infused animals which support the hypothesis that MC signaling within the NAc may contribute to ethanol consumption by modulating non-homeostatic aspects (palatability) of intake.
Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Hipotálamo/fisiologia , Núcleo Accumbens/fisiologia , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/fisiologia , Percepção Gustatória/fisiologia , Animais , Hipotálamo/efeitos dos fármacos , Masculino , Microinjeções , Núcleo Accumbens/efeitos dos fármacos , Peptídeos Cíclicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Percepção Gustatória/efeitos dos fármacosRESUMO
The melanocortin system is involved in animal models of obesity and anorexia-cachexia and MC4 receptors (MC4-R) are currently a target system for the development of drugs aimed to treat obesity and eating disorders in humans. Previous evidence suggest that feeding peptides might lack their orexigenic activity while stimulate ethanol intake. The present study comparatively evaluated food intake (4-h interval) in Sprague-Dawley (SD) rats drinking ethanol (6% w/v, 2 bottle choice paradigm) (EE group) and ethanol-naïve (EN) rats in response to bilateral infusion of the selective MC4-R antagonist HS014 (0, 0.02 or 0.05 µg/0.5 µl/site) or the selective MC4-R agonist cyclo(NH-CH(2)-CH(2)-CO-His-d-Phe-Arg-Trp-Glu)-NH(2) (0, 0.75 or 1.5 µg/0.5 µl/site), into the lateral hypothalamus (LH), the nucleus accumbens (NAc), or the ventral tegmental area (VTA). The main findings in the study are: (1) LH-infusions of the MC4-R antagonist increased and the agonist reduced feeding and total calories consumed, while ethanol intake remained unaltered. (2) NAc- and VTA-infusions of the selective agonist reduced food, ethanol and total calories intake. (3) NAc- and VTA-infusions of the MC4-R antagonist increased feeding in EN rats, but not in EE animals which showed a mild increase in ethanol intake, while total calories consumed remained unaltered. Present data show that having ethanol available reduces feeding elicited by NAc and VTA-MC4-R blockade. Additionally, while MC4-R signaling in the LH appears to modulate homeostatic aspects of feeding, it may contribute to non-homeostatic aspects of ingestive behaviors in the VTA and the NAc.
Assuntos
Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Etanol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismoRESUMO
Neuropeptide Y (NPY) is a 36-amino-acid neuromodulator that is distributed throughout the central nervous system and has been implicated in a wide range of neurobiological responses including the integration of emotional behavior. The anxiolytic properties of NPY are modulated by NPY signaling in the hippocampus and in the central (CeA) and basolateral (BLA) nuclei of the amygdala. Recently, the neurotoxin saporin, when conjugated to NPY (NPY-SAP), was shown to selectively kill NPY receptor-expressing neurons and has been used as a tool to study the central NPY neurocircuitry involved with feeding behaviors. Here we determined if NPY-SAP can be used as a tool to study the central NPY neurocircuitry that modulates anxiety-like behaviors. BALB/cJ mice were given injection of either NPY-SAP or a control blank saporin (B-SAP) into the CeA or the basomedial hypothalamus (BMH) as a control injection site. The elevated zero maze test was used to assess anxiety-like behavior and NPY-SAP-induced lesions were verified using NPY Y1 receptor (Y1R) immunoreactivity (IR). Results showed that injection of NPY-SAP into the CeA site-specifically blunted Y1R IR in the CeA which was associated with a significant increase in anxiety-like behavior. Injection of NPY-SAP into the BMH, while locally blunting Y1R IR, promoted a compensatory increase of Y1R IR in the BLA and the CA3 region of the hippocampus which was associated with a significant reduction of anxiety-like behavior. The present set of experiments suggest that the NPY-SAP neurotoxin may be a useful tool for studying the NPY neurocircuitry that modulates anxiety-like behaviors.
Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Neuropeptídeo Y/uso terapêutico , Proteínas Inativadoras de Ribossomos Tipo 1/uso terapêutico , Animais , Ansiolíticos/química , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neuropeptídeo Y/química , Proteínas Inativadoras de Ribossomos Tipo 1/química , SaporinasRESUMO
BACKGROUND: The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor, pro-opiomelanocortin (POMC). Previous research has shown that MC receptor (MCR) agonists reduce, and MCR antagonists increase, ethanol consumption in rats and mice. Consistently, genetic deletion of the endogenous MCR antagonist, agouti-related protein (AgRP), causes reductions of ethanol-reinforced lever pressing and binge-like ethanol drinking in C57BL/6J mice. Ethanol also has direct effects on the central MC system, as chronic exposure to an ethanol-containing diet causes significant reductions of alpha-melanocyte stimulating hormone (alpha-MSH) immunoreactivity in specific brain regions of Sprague-Dawley rats. Together, these observations suggest that the central MC system modulates neurobiological responses to ethanol. To further characterize the role of the MC system in responses to ethanol, here we compared AgRP and alpha-MSH immunoreactivity in response to an acute injection of saline or ethanol between high ethanol drinking C57BL/6J mice and moderate ethanol drinking 129/SvJ mice. METHODS: Mice received an intraperitoneal (i.p.) injection of ethanol (1.5 g/kg or 3.5 g/kg; mixed in 0.9% saline) or an equivolume of 0.9% saline. Two hours after injection, animals were sacrificed and their brains were processed for AgRP and alpha-MSH immunoreactivity. RESULTS: Results indicated that acute ethanol administration triggered a dose-dependent increase in AgRP immunoreactivity in the arcuate (ARC) of C57BL/6J mice, an effect that was not evident in the 129/SvJ strain. Although acute administration of ethanol did not influence alpha-MSH immunoreactivity, C57BL/6J mice had significantly greater overall alpha-MSH immunoreactivity in the ARC, dorsomedial, and lateral regions of the hypothalamus relative to the 129/SvJ strain. In contrast, C57BL/6J mice displayed significantly lower alpha-MSH immunoreactivity in the medial amygdala. CONCLUSIONS: The results show that acute ethanol exposure has direct effects on endogenous AgRP activity in ethanol preferring C57BL/6J mice. It is suggested that ethanol-induced increases in AgRP may be part of a positive feedback system that stimulates excessive binge-like ethanol drinking in C57BL/6J mice. Inherent differences in alpha-MSH immunoreactivity may contribute to differences in neurobiological responses to ethanol that are characteristically observed between the C57BL/6J and 129/SvJ inbred strains of mice.
Assuntos
Proteína Relacionada com Agouti/imunologia , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Etanol/toxicidade , Animais , Núcleo Arqueado do Hipotálamo/imunologia , Relação Dose-Resposta Imunológica , Hipotálamo/química , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie , alfa-MSH/imunologia , alfa-MSH/metabolismoRESUMO
BACKGROUND: The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). Recent pharmacologic and genetic evidence suggests that MC receptor (MCR) signaling modulates neurobiologic responses to ethanol and ethanol intake. Because ethanol decreases POMC mRNA levels, we determined if exposure to an ethanol-containing diet (ED) would significantly reduce central immunoreactivity of the MC peptide alpha-MSH in rats. We also determined if ethanol exposure would alter the immunoreactivity of agouti-related protein (AgRP), an endogenous MCR antagonist. METHODS: Male Sprague-Dawley rats were given 18 days of access to normal rodent chow or a control diet (CD), or short-term (4 days) or long-term (18 days) access to an ED. At the end of the study, rats were perfused with 4% paraformaldehyde and their brains were sectioned into two sets for processing with alpha-MSH or AgRP immunohistochemistry. RESULTS: Rats exposed to an ED showed significant reductions of central alpha-MSH immunoreactivity relative to rats exposed to a control diet (CD) or normal rodent chow. Ethanol-induced reductions of alpha-MSH immunoreactivity were site-specific and were noted in regions of the hypothalamus and extended amygdala, as well as the paraventricular nucleus of the thalamus. Because there were no differences in body weights or caloric intake between the CD and ED groups, reductions of alpha-MSH immunoreactivity in ED-treated rats are best explained by ethanol exposure rather than altered energy balance. No significant ethanol-induced alterations in hypothalamic AgRP immunoreactivity were detected. CONCLUSIONS: The present study shows that ethanol site specifically reduces alpha-MSH immunoreactivity in rat brain. These observations, in tandem with recent pharmacologic and genetic studies, suggest that the endogenous MC system modulates neurobiologic responses to ethanol. Thus, compounds which target MCRs may prove to have therapeutic value in the treatment of excessive ethanol consumption and/or the symptoms associated with ethanol withdrawal.