Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Arch Occup Environ Health ; 76(3): 174-85, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12690492

RESUMO

The importance of the isoform CYP2E1 of the human cytochrome P-450 superfamily of enzymes for occupational and environmental medicine is derived from its unique substrate spectrum that includes a number of highly important high-production chemicals, such as aliphatic and aromatic hydrocarbons, solvents and industrial monomers (i.a. alkanes, alkenes, aromatic and halogenated hydrocarbons). Many polymorphic genes, such as CYP2E1, show considerable differences in allelic distribution between different human populations. The polymorphic nature of the human CYP2E1 gene is significant for inter-individual differences in toxicity of its substrates. Since the substrate spectrum of CYP2E1 includes many compounds of basic relevance to industrial toxicology, a rationale for metabolic interactions of different CYP2E1 substrates is provided. In-depth research into the inter-individual phenotypic differences of human CYP2E1 enzyme activities was enabled by the recognition that the 6-hydroxylation of the drug chlorzoxazone is mediated by CYP2E1. Studies on CYP2E1 phenotyping have pointed to inter-individual variations in enzyme activities. There are consistent ethnic differences in CYP2E1 enzyme expression, mostly demonstrated between European and Japanese populations, which point to a major impact of genetic factors. The most frequently studied genetic polymorphisms are the restriction fragment length polymorphisms PstI/ RsaI (mutant allele: CYP2E1*5B) located in the 5'-flanking region of the gene, as well as the DraI polymorphism (mutant allele: CYP2E1*6) located in intron 6. These polymorphisms are partly related, as they form the common allele designated CYP2E1*5A. Striking inter-ethnic differences between Europeans and Asians appear with respect to the frequencies of the CYP2E1*5A allele (only approximately 5% of Europeans are heterozygous, but 37% of Asians are, whilst 6% of Asians are homozygous). Available studies indicate a wide variation in human CYP2E1 expression, which are very likely based on complex gene-environment interactions. Major inter-ethnic differences are apparent on the genotyping and the phenotyping levels. Selected cases are presented where inter-ethnic variations of CYP2E1 may provide likely explanations for unexplained findings concerning industrial chemicals that are CYP2E1 substrates. Possible consequences of differential inter-individual and inter-ethnic susceptibilities are related to individual expressions of clinical symptoms of chemical toxicity, to results of biological monitoring of exposed workers, and to the interpretation of results of epidemiological or molecular-epidemiological studies.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Poluentes Ambientais/intoxicação , Compostos Orgânicos/intoxicação , Acrilonitrila/metabolismo , Acrilonitrila/intoxicação , Alelos , Animais , Butadienos/metabolismo , Butadienos/intoxicação , Citocromo P-450 CYP2E1/genética , Poluentes Ambientais/metabolismo , Ativação Enzimática , Variação Genética , Hexanos/metabolismo , Hexanos/intoxicação , Humanos , Compostos Orgânicos/metabolismo , Intoxicação/enzimologia , Intoxicação/genética , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Grupos Raciais/genética
2.
Arch Toxicol ; 76(4): 209-17, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12029384

RESUMO

The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-theta;, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes alpha, mu, and pi was studied with affinity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes alpha, mu, and pi but also of enhancing UDGPT and GST-theta. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.


Assuntos
Café/química , Diterpenos/farmacologia , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Animais , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/enzimologia , Glândulas Exócrinas/efeitos dos fármacos , Glândulas Exócrinas/enzimologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Miocárdio/enzimologia , Especificidade de Órgãos , Ratos , Ratos Endogâmicos F344 , Baço/efeitos dos fármacos , Baço/enzimologia , Testículo/efeitos dos fármacos , Testículo/enzimologia , Sistema Urinário/efeitos dos fármacos , Sistema Urinário/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA