Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatol Commun ; 6(5): 1140-1156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34817932

RESUMO

Induction of neoangiogenesis is a hallmark feature during disease progression of hepatocellular carcinoma (HCC). Antiangiogenetic compounds represent a mainstay of therapeutic approaches; however, development of chemoresistance is observed in the majority of patients. Recent findings suggest that tumor-initiating cells (TICs) may play a key role in acquisition of resistance, but the exact relevance for HCC in this process remains to be defined. Primary and established hepatoma cell lines were exposed to long-term sorafenib treatment to model acquisition of resistance. Treatment effects on TICs were estimated by sphere-forming capacity in vitro, tumorigenicity in vivo, and flow cytometry. Adaptive molecular changes were assessed by whole transcriptome analyses. Compensatory mechanisms of resistance were identified and directly evaluated. Sustained antiproliferative effect following sorafenib treatment was observed in three of six HCC cell lines and was followed by rapid regrowth, thereby mimicking responses observed in patients. Resistant cells showed induction in sphere forming in vitro and tumor-initiating capacity in vivo as well as increased number of side population and epithelial cell adhesion molecule-positive cells. Conversely, sensitive cell lines showed consistent reduction of TIC properties. Gene sets associated with resistance and poor prognosis, including Hippo/yes-associated protein (YAP), were identified. Western blot and immunohistochemistry confirmed increased levels of YAP. Combined treatment of sorafenib and specific YAP inhibitor consistently revealed synergistic antioncogenic effects in resistant cell lines. Conclusion: Resistance to antiangiogenic therapy might be driven by transient expansion of TICs and activation of compensatory pro-oncogenic signaling pathways, including YAP. Specific targeting of TICs might be an effective therapeutic strategy to overcome resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Proteínas de Sinalização YAP
2.
Gut ; 62(12): 1777-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23411027

RESUMO

OBJECTIVE: The standard therapy for advanced hepatocellular carcinoma (HCC) is sorafenib, with most patients experiencing disease progression within 6 months. Label-retaining cancer cells (LRCC) represent a novel subpopulation of cancer stem cells (CSC). The objective was to test whether LRCC are resistant to sorafenib. METHODS: We tested human HCC derived LRCC and non-LRCC before and after treatment with sorafenib. RESULTS: LRCC derived from human HCC are relatively resistant to sorafenib. The proportion of LRCC in HCC cell lines is increased after sorafenib while the general population of cancer cells undergoes growth suppression. We show that LRCC demonstrate improved viability and toxicity profiles, and reduced apoptosis, over non-LRCC. We show that after treatment with sorafenib, LRCC upregulate the CSC marker aldehyde dehydrogenase 1 family, wingless-type MMTV-integration-site family, cell survival and proliferation genes, and downregulate apoptosis, cell cycle arrest, cell adhesion and stem cells differentiation genes. This phenomenon was accompanied by non-uniform activation of specific isoforms of the sorafenib target proteins extracellular-signal-regulated kinases and v-akt-murine-thymoma-viral-oncogene homologue (AKT) in LRCC but not in non-LRCC. A molecular pathway map for sorafenib treated LRCC is proposed. CONCLUSIONS: Our results suggest that HCC derived LRCC are relatively resistant to sorafenib. Since LRCC can generate tumours with as few as 10 cells, our data suggest a potential role for these cells in disease recurrence. Further investigation of this phenomenon might provide novel insights into cancer biology, cancer recurrence and drug resistance with important implications for the development of novel cancer therapies based on targeting LRCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/citologia , Linhagem Celular Tumoral/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Niacinamida/uso terapêutico , Proteína Oncogênica v-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sorafenibe , Células-Tronco/efeitos dos fármacos
3.
J Hepatol ; 41(5): 815-22, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15519655

RESUMO

BACKGROUND/AIMS: Co-expression of c-Myc and TGF-alpha in the mouse liver accelerates hepatocarcinogenesis and enhances DNA damage due to chronic oxidative stress. Dietary supplementation with vitamin E (VE) inhibits hepatocarcinogenesis and reduces chromosomal alterations in the same mice. Here we investigated the sources of reactive oxygen species (ROS) production in c-Myc/TGF-alpha transgenic mice. METHODS: Inducible nitric oxide synthase (iNOS) and NADPH oxidase levels were determined in c-Myc, TGF-alpha and c-Myc/TGF-alpha mice by RT-PCR, western blot analysis and immunohistochemistry. RESULTS: iNOS and nitrotyrosines levels were higher in the three transgenic lines when compared with wild-type mice. Preneoplastic and neoplastic lesions from c-Myc, TGF-alpha and c-Myc/TGF-alpha transgenic mice displayed upregulation of NADPH oxidase subunits p47-, 67-phox, Rac1, HSP 70, and HO-1. Importantly, dietary supplementation with vitamin E abolished iNOS expression, lowered nitrotyrosines, p47-, p67-phox, and Rac1 levels, and suppressed HSP 70 and HO-1 proteins in c-Myc/TGF-alpha livers. CONCLUSIONS: The results suggest that iNOS and NADPH oxidase are involved in ROS generation during c-Myc/TGF-alpha hepatocarcinogenesis and are inhibited by VE treatment. The data provide additional evidence for the potential use of VE in treatment of chronic liver diseases and HCC prevention.


Assuntos
Antioxidantes/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Crescimento Transformador alfa/genética , Tirosina/análogos & derivados , Vitamina E/farmacologia , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/prevenção & controle , Masculino , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA