Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cardiovasc Res ; 118(7): 1758-1770, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155498

RESUMO

AIMS: Takotsubo syndrome (TTS) is an acute heart failure, typically triggered by high adrenaline during physical or emotional stress. It is distinguished from myocardial infarction (MI) by a characteristic pattern of ventricular basal hypercontractility with hypokinesis of apical segments, and in the absence of culprit coronary occlusion. We aimed to understand whether recently discovered circulating biomarkers miR-16 and miR-26a, which differentiate TTS from MI at presentation, were mechanistically involved in the pathophysiology of TTS. METHODS AND RESULTS: miR-16 and miR-26a were co-overexpressed in rats with AAV and TTS induced with an adrenaline bolus. Untreated isolated rat cardiomyocytes were transfected with pre-/anti-miRs and functionally assessed. Ventricular basal hypercontraction and apical depression were accentuated in miR-transfected animals after induction of TTS. In vitro miR-16 and/or miR-26a overexpression in isolated apical (but not basal), cardiomyocytes produced strong depression of contraction, with loss of adrenaline sensitivity. They also enhanced the initial positive inotropic effect of adrenaline in basal cells. Decreased contractility after TTS-miRs was reproduced in non-failing human apical cardiomyocytes. Bioinformatic profiling of miR targets, followed by expression assays and functional experiments, identified reductions of CACNB1 (L-type calcium channel Cavß subunit), RGS4 (regulator of G-protein signalling 4), and G-protein subunit Gß (GNB1) as underlying these effects. CONCLUSION: miR-16 and miR-26a sensitize the heart to TTS-like changes produced by adrenaline. Since these miRs have been associated with anxiety and depression, they could provide a mechanism whereby priming of the heart by previous stress causes an increased likelihood of TTS in the future.


Assuntos
MicroRNA Circulante , MicroRNAs , Infarto do Miocárdio , Cardiomiopatia de Takotsubo , Animais , Epinefrina , MicroRNAs/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Miócitos Cardíacos , Ratos , Cardiomiopatia de Takotsubo/induzido quimicamente , Cardiomiopatia de Takotsubo/complicações , Cardiomiopatia de Takotsubo/genética
2.
Cardiovasc Res ; 118(3): 746-762, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33693475

RESUMO

An efficient and safe drug development process is crucial for the establishment of new drugs on the market aiming to increase quality of life and life-span of our patients. Despite technological advances in the past decade, successful launches of drug candidates per year remain low. We here give an overview about some of these advances and suggest improvements for implementation to boost preclinical and clinical drug development with a focus on the cardiovascular field. We highlight advantages and disadvantages of animal experimentation and thoroughly review alternatives in the field of three-dimensional cell culture as well as preclinical use of spheroids and organoids. Microfluidic devices and their potential as organ-on-a-chip systems, as well as the use of living animal and human cardiac tissues are additionally introduced. In the second part, we examine recent gold standard randomized clinical trials and present possible modifications to increase lead candidate throughput: adaptive designs, master protocols, and drug repurposing. In silico and N-of-1 trials have the potential to redefine clinical drug candidate evaluation. Finally, we briefly discuss clinical trial designs during pandemic times.


Assuntos
Organoides , Qualidade de Vida , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Coração , Humanos , Dispositivos Lab-On-A-Chip
3.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680572

RESUMO

BACKGROUND: Peripheral artery disease (PAD) is a significant burden, particularly among patients with severe disease requiring invasive treatment. We applied a general Machine Learning (ML) workflow and investigated if a multi-dimensional marker set of standard clinical parameters can identify patients in need of vascular intervention without specialized intra-hospital diagnostics. METHODS: This is a retrospective study involving patients with stable PAD (sPAD, Fontaine Class I and II, n = 38) and unstable PAD (unPAD, Fontaine Class III and IV, n = 18) in need of invasive therapeutic measures. ML algorithms such as Random Forest were utilized to evaluate a matrix consisting of multiple routinely clinically available parameters (age, complete blood count, inflammation, lipid, iron metabolism). RESULTS: ML has enabled a generation of an Artificial Intelligence (AI) PAD score (AI-PAD) that successfully divided sPAD from unPAD patients (high AI-PAD in sPAD, low AI-PAD in unPAD, cutoff at 50 AI-PAD units). Furthermore, the probability score positively coincided with gold-standard intra-hospital mean ankle-brachial index (ABI). CONCLUSION: AI-based tools may be promising to enable the correct identification of patients with unstable PAD by using existing clinical information, thus supplementing clinical decision making. Additional studies in larger prospective cohorts are necessary to determine the usefulness of this approach in comparison to standard diagnostic measures.

4.
Geroscience ; 43(2): 673-690, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33517527

RESUMO

Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.


Assuntos
Espermidina , Telômero , Envelhecimento , Animais , Autofagia , Suplementos Nutricionais , Camundongos , Espermidina/farmacologia
5.
Nat Commun ; 11(1): 633, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005803

RESUMO

Despite proven efficacy of pharmacotherapies targeting primarily global neurohormonal dysregulation, heart failure (HF) is a growing pandemic with increasing burden. Treatments mechanistically focusing at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators and essential drivers of disease progression. We previously demonstrated that miR-132 is both necessary and sufficient to drive the pathological cardiomyocytes growth, a hallmark of adverse cardiac remodelling. Therefore, miR-132 may serve as a target for HF therapy. Here we report further mechanistic insight of the mode of action and translational evidence for an optimized, synthetic locked nucleic acid antisense oligonucleotide inhibitor (antimiR-132). We reveal the compound's therapeutic efficacy in various models, including a clinically highly relevant pig model of HF. We demonstrate favourable pharmacokinetics, safety, tolerability, dose-dependent PK/PD relationships and high clinical potential for the antimiR-132 treatment scheme.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Humanos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacocinética , Suínos
6.
Eur J Heart Fail ; 20(1): 78-85, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29027324

RESUMO

AIMS: Non-coding microRNAs (miRNAs) are critically involved in cardiovascular pathophysiology. Since they are measurable in most body fluids, they have been proposed as circulating biomarkers. We examined the prognostic value of a specific candidate miRNA in a large cohort of patients with chronic heart failure (HF) enrolled in a multicentre clinical trial. METHODS AND RESULTS: Plasma levels of miR-132 were measured using miRNA-specific PCR-based technologies at randomization in 953 patients with chronic, symptomatic HF from the GISSI-Heart Failure trial. The association with fatal (all-cause and cardiovascular death) and non-fatal events (time to first admission to hospital for cardiovascular reasons or worsening of HF) and the incremental risk prediction were estimated in adjusted models. Higher circulating miR-132 levels were independently associated with younger age, better renal filtration, ischaemic aetiology of HF, more severe HF symptoms, higher diastolic blood pressure, higher cholesterol, and male sex. After extensive adjustment for demographic, clinical, and echocardiographic risk factors and baseline NT-proBNP concentrations, miR-132 remained associated only with HF hospitalizations (hazard ratio 0.79, 95% confidence interval 0.66-0.95, P = 0.01) and improved its risk prediction with the continuous net reclassification index (cNRI 0.205, P = 0.001). CONCLUSION: In well characterized patients with chronic HF, circulating miR-132 levels rise with the severity of HF. Lower circulating miR-132 levels improved risk prediction for HF readmission beyond traditional risk factors, but not for mortality. MiR-132 may be helpful to intensify strategies aimed at reducing re-hospitalization, which has a substantial health and economic burden in HF.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Insuficiência Cardíaca/sangue , Hospitalização/tendências , MicroRNAs/sangue , Medição de Risco/métodos , Rosuvastatina Cálcica/administração & dosagem , Volume Sistólico/fisiologia , Administração Oral , Idoso , Biomarcadores/sangue , MicroRNA Circulante/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Ecocardiografia , Feminino , Seguimentos , Alemanha/epidemiologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/epidemiologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Itália/epidemiologia , Masculino , MicroRNAs/genética , Morbidade/tendências , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Volume Sistólico/efeitos dos fármacos , Taxa de Sobrevida/tendências
7.
Eur Heart J ; 33(9): 1067-75, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362515

RESUMO

AIMS: Impaired myocardial sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) activity is a hallmark of failing hearts, and SERCA2a gene therapy improves cardiac function in animals and patients with heart failure (HF). Deregulation of microRNAs has been demonstrated in HF pathophysiology. We studied the effects of therapeutic AAV9.SERCA2a gene therapy on cardiac miRNome expression and focused on regulation, expression, and function of miR-1 in reverse remodelled failing hearts. METHODS AND RESULTS: We studied a chronic post-myocardial infarction HF model treated with AAV9.SERCA2a gene therapy. Heart failure resulted in a strong deregulation of the cardiac miRNome. miR-1 expression was decreased in failing hearts, but normalized in reverse remodelled hearts after AAV9.SERCA2a gene delivery. Increased Akt activation in cultured cardiomyocytes led to phosphorylation of FoxO3A and subsequent exclusion from the nucleus, resulting in miR-1 gene silencing. In vitro SERCA2a expression also rescued miR-1 in failing cardiomyocytes, whereas SERCA2a inhibition reduced miR-1 levels. In vivo, Akt and FoxO3A were highly phosphorylated in failing hearts, but reversed to normal by AAV9.SERCA2a, leading to cardiac miR-1 restoration. Likewise, enhanced sodium-calcium exchanger 1 (NCX1) expression during HF was normalized by SERCA2a gene therapy. Validation experiments identified NCX1 as a novel functional miR-1 target. CONCLUSION: SERCA2a gene therapy of failing hearts restores miR-1 expression by an Akt/FoxO3A-dependent pathway, which is associated with normalized NCX1 expression and improved cardiac function.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Terapia Genética/métodos , Insuficiência Cardíaca/terapia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Células Cultivadas , Vasos Coronários , Regulação para Baixo , Proteína Forkhead Box O3 , Lactonas/farmacologia , Ligadura , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/farmacologia , Transdução de Sinais/fisiologia , Trocador de Sódio e Cálcio/metabolismo
8.
Circulation ; 124(6): 720-30, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788589

RESUMO

BACKGROUND: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS: Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/fisiologia , Infarto do Miocárdio/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Arteríolas/patologia , Capilares/patologia , Hipóxia Celular , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Colágeno , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/patologia , Fator de Transcrição GATA2/biossíntese , Fator de Transcrição GATA2/genética , Perfilação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Laminina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Oligorribonucleotídeos/farmacologia , Proteoglicanas , Interferência de RNA , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Esferoides Celulares , Remodelação Ventricular , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Quinases Ativadas por p21/biossíntese , Quinases Ativadas por p21/genética
9.
Int J Cardiol ; 137(3): 267-75, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18723230

RESUMO

BACKGROUND: Ghrelin, was observed to have treatment-potential for severe chronic heart failure (CHF) and cardiac cachexia based on anti-cachectic and cardio-protective effects. METHODS: We performed two studies to assess the effects of human ghrelin on food intake, body weight and body composition, as well as heart function in a rat model of CHF. Study-1 (50 or 500 nmole/kg/d ghrelin by pump infusion) was focused on food intake and body composition, study-2 (50 or 100 nmole/kg/d ghrelin by subcutaneous injection (3-times daily) was focused on heart function due to a lack of cardiac effects observed in study-1. In both studies, myocardial infarction was induced by LAD ligation. On day 28 after surgery, rats were randomized and treated with ghrelin or placebo for 4 weeks. Food intake (study-1), body composition (NMR) cardiac function (echocardiography and invasive hemodynamics (study-2 only) were assessed. RESULTS: In study-1, CHF rats treated with high dose ghrelin showed an increase in body weight (+25%, p<0.001), lean mass (+16%, p<0.01) and fat mass (+17%, p=0.001) vs placebo. In study-2, CHF rats treated with both low- and high dose ghrelin showed an increase in body weight (both +18%, p

Assuntos
Composição Corporal/efeitos dos fármacos , Ingestão de Alimentos , Grelina/farmacologia , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Ecocardiografia , Grelina/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Injeções Subcutâneas , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
10.
Circulation ; 118(8): 818-27, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18678774

RESUMO

BACKGROUND: Reduced endothelial nitric oxide (NO) bioavailability contributes to the progression of heart failure. In this study, we investigated whether the transcription enhancer of endothelial NO synthase (eNOS) AVE9488 improves cardiac remodeling and heart failure after experimental myocardial infarction (MI). METHODS AND RESULTS: Starting 7 days after coronary artery ligation, rats with MI were treated with placebo or AVE9488 (25 ppm) as a dietary supplement for 9 weeks. AVE9488 therapy versus placebo substantially improved left ventricular (LV) function, reduced LV filling pressure, and prevented the rightward shift of the pressure-volume curve. AVE9488 also attenuated the extent of pulmonary edema, reduced LV fibrosis and myocyte cross-sectional area, and prevented the increases in LV gene expression of atrial natriuretic factor, brain natriuretic peptide, and endothelin-1. eNOS protein levels and calcium-dependent NOS activity were decreased in the surviving LV myocardium from placebo MI rats and normalized by AVE9488. The beneficial effects of AVE9488 on LV dysfunction and remodeling after MI were abrogated in eNOS-deficient mice. Aortic eNOS protein expression and endothelium-dependent NO-mediated vasorelaxation were significantly enhanced by AVE9488 treatment after infarction, whereas increased vascular superoxide anion formation was reduced. Moreover, AVE9488 prevented the marked depression of circulating endothelial progenitor cell levels in rats with heart failure after MI. CONCLUSIONS: Long-term treatment with the eNOS enhancer AVE9488 improved LV remodeling and contractile dysfunction after MI. Molecular alterations, circulating endothelial progenitor cell levels, and endothelial vasomotor dysfunction were improved by AVE9488. Pharmacological interventions designed to increase eNOS-derived NO constitute a promising therapeutic approach for the amelioration of postinfarction ventricular remodeling and heart failure.


Assuntos
Benzamidas/farmacologia , Fármacos Cardiovasculares/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Benzamidas/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Modelos Animais de Doenças , Masculino , Contração Miocárdica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/genética , Ratos , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA