Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1200892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027166

RESUMO

Objective: To explore the causal association between breakfast skipping and bone mineral density (BMD) through two-sample Mendelian randomisation (MR) analysis. Methods: A two-sample MR approach was adopted to explore the causal relationship of breakfast skipping with BMDs (across three skeletal sites and five age groups). Publicly available genome-wide association study summary data were used for MR analysis. We used five methods to estimate the causal associations between breakfast skipping and BMDs: inverse-variance weighting (IVW), MR-Egger, weighted median, simple mode, and weighted mode. IVW was used for the main analysis and the remaining four methods were used as supplementary analyses. The heterogeneity of the MR results was determined using IVW and MR-Egger methods. The pleiotropy of the MR results was determined using MR-Egger intercept. Furthermore, a leave-one-out test was performed to determine whether the MR results were affected by a single nucleotide polymorphism. Results: With the IVW method, we did not find any causal relationship between breakfast skipping and forearm, femoral neck, and lumbar spine BMD. Subsequently, when we included BMD data stratified by five different age groups in the analysis, the results showed that there was no apparent causal effect between breakfast skipping and age-stratified BMD. This finding was supported by all four supplementary methods (P > 0.05 for all methods). No heterogeneity or horizontal pleiotropy was detected in any of the analyses (P > 0.05). The leave-one-out tests conducted in the analyses did not identify any single nucleotide polymorphism that could have influenced the MR results, indicating the reliability of our findings. Conclusion: No causal effect was found between breakfast skipping and BMD (across three skeletal sites and five age groups).


Assuntos
Densidade Óssea , Desjejum , Densidade Óssea/genética , Causalidade , Estudo de Associação Genômica Ampla , Reprodutibilidade dos Testes , Análise da Randomização Mendeliana
2.
J Cell Mol Med ; 27(22): 3601-3613, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37621124

RESUMO

Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1ß. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.


Assuntos
Anemarrhena , Diabetes Mellitus Experimental , Osteoporose , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Piroptose , Anemarrhena/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoblastos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Phytochemistry ; 209: 113613, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804478

RESUMO

Three unprecedented thioether-linked dimeric pyrimidines, namely ligusticumines A-C, together with twelve known compounds were isolated and identified from the traditional Chinese medicinal-edible herb, Ligusticum striatum DC. The structures of all the isolated compounds were determined from NMR, HRESIMS and X-ray diffraction spectroscopies. Additionally, a novel 3-step synthetic route was developed to synthesize ligusticumine C by substitution, thiolation and coupling, with an overall yield of 5.4%. The inhibitory activities of the isolated compounds against phosphatidylinositol 3-kinase (PI3K) were tested, of which, (3S)-butylphthalide, a characteristic component of L. striatum, showed a potent inhibitory effect on PI3Kα (IC50: 3.6 µg/mL).


Assuntos
Ligusticum , Plantas Medicinais , Ligusticum/química , Fosfatidilinositol 3-Quinases , Pirimidinas/química , Pirimidinas/farmacologia , Espectroscopia de Ressonância Magnética
4.
Brain Behav ; 12(6): e2600, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485000

RESUMO

INTRODUCTION: Behavior management of children during dental treatment is an important but challenging issue. As a new technique, VR has been applied in pediatric dental anxiety. But there is no final conclusion whether VR reduces children's dental anxiety. METHODS: The aim of the study is to assess the effectiveness of a digital intervention using virtual reality (VR) helmets on dental anxiety, pain perception, and behavior triggered for children, as well as occurrence of simulator sickness in local anesthesia and primary teeth extraction. A total of 128 children, who needed primary teeth extraction under local anesthesia, were randomly allocated into two groups: use VR helmets and traditional behavior guidance procedures (control). Modified Child Fear Survey Schedule Dental Subscale (CFSS-DS), Wong-Baker FACES Pain Scale, Houpt Scale, and Simulator sickness questionnaire (SSQ) were used to assess children's dental anxiety, pain perception, and behavior triggered and occurrence of simulator sickness. RESULTS: CFSS-DS score in the VR group was significantly decreased after dental treatment (34.58±6.90 before operation and 32.32±15.58 after operation, p = .02). The score of Wong Baker Scale in the VR group (3.47±0.76) was significantly lower than that in the control group (5.56±1.13, p = .015). There was no significant difference in the Houpt Behavior Scale score and the SSQ score between the VR group and the control group (p = .35, p = .305). CONCLUSION: The use of VR helmets in primary teeth extraction can significantly reduce dental anxiety and pain perception in children without occurrence of simulator sickness.


Assuntos
Anestesia Local , Realidade Virtual , Ansiedade/prevenção & controle , Criança , Ansiedade ao Tratamento Odontológico/prevenção & controle , Dispositivos de Proteção da Cabeça , Humanos , Dente Decíduo
5.
Front Endocrinol (Lausanne) ; 12: 841668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154014

RESUMO

Osteoporosis (OP) is a common skeletal disease, characterized by decreased bone formation and increased bone resorption. As a novel Chinese medicine formula, Zhuanggu Busui formula (ZGBSF) has been proved to be an effective prescription for treating OP in clinic, however, the pharmacological mechanisms underlying the beneficial effects remain obscure. In this study, we explored the pharmacological mechanisms of ZGBSF against OP via network pharmacology analysis coupled with in vivo experimental validation. The results of the network pharmacology analysis showed that a total of 86 active ingredients and 164 targets of ZGBSF associated with OP were retrieved from the corresponding databases, forming an ingredient-target-disease network. The protein-protein interaction (PPI) network manifested that 22 core targets, including Caspase-3, BCL2L1, TP53, Akt1, etc, were hub targets. Moreover, functional enrichment analyses revealed that PI3K-Akt and apoptosis signalings were significantly enriched by multiple targets and served as the targets for in vivo experimental study validation. The results of animal experiments revealed that ZGBSF not only reversed the high expression of Caspase-3, Bax, Prap, and low expression of Bcl-2 in osteoblasts of the OP mouse model but also contributed to the phosphorylation of Akt1 and expression of PI3K, thereby promoting osteogenesis and ameliorating the progression of OP. In conclusion, this study systematically and intuitively illustrated that the possible pharmacological mechanisms of ZGBSF against OP through multiple ingredients, targets, and signalings, and especially the inhibition of the apoptosis and the activation of PI3K-Akt signaling.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Farmacologia em Rede , Osteoporose/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Mapas de Interação de Proteínas
6.
Biomed Pharmacother ; 130: 110581, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745914

RESUMO

BACKGROUND: Radix Rehmanniae Praeparata (RR), the steamed roots of Rehmannia glutinosa, is a traditional Chinese medicine with the function of kidney-nourishing, and it has been safety used for centuries to treat bone-related disorders. The aim of this study is to investigate the positive effect and underlying mechanism of RR enhancing bone fracture healing in mouse model. METHODS: Ten-week-old C57BL/6J mice were subjected to a unilateral open transverse tibial fracture and provided a daily treatment of RR. Bone samples were harvested for tissue analyses including x-ray, µCT, histology, histomorphometry, biomechanical testing, immunohistochemical (IHC) and quantitative gene expression analysis. To determine the role of TGF-ß in accelerating fracture healing effect of RR, aforementioned experiments were performed on Gli1-CreER; Tgfbr2 flox/flox (Tgfbr2Gli1ER) conditional knockout mice. RESULTS: RR promoted bone fracture healing and strengthened bone intensity in wild-type and Cre- mice with the activation of TGF-ß/Smad2 signaling, on the contrary, RR failed to accelerating fracture healing in Tgfbr2Gli1ER mice. CONCLUSION: RR promotes bone fracture healing by intensify the contribution of Gli1+ cells on bone and cartilage formation mainly in TGF-ß-dependent manner. RR is an alternative option for clinical treatment of fracture.


Assuntos
Fraturas Ósseas/terapia , Células-Tronco Mesenquimais/metabolismo , Raízes de Plantas , Rehmannia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Fraturas Ósseas/metabolismo , Masculino , Medicina Tradicional Chinesa , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais , Tíbia/lesões
7.
Life Sci ; 244: 117336, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972206

RESUMO

AIMS: Postmenopausal osteoporosis and other osteolytic bone diseases are often caused by the elevation in osteoclastogenesis and/or increased osteoclastic bone resorption, leading to excessive bone loss. Hederagenin (Hed) is a pentacyclic triterpenoid saponin extracted from various natural medicinal plants and exhibits numerous biological activities and may offer benefits against bone-related conditions. We evaluated the effects of Hed on osteoclast formation and bone resorption in vitro and the in vivo therapeutic benefits in the mouse model of ovariectomy (OVX)-induced bone loss. MAIN METHODS: In vitro, osteoclast formation were determined by TRAcp staining; bone resorption were examined using Hydroxyapatite resorption assay and Podosomal actin belt formation assay; Related molecular mechanisms were determined by western blot assay. Construction of OVX mice by bilateral oophorectomy to simulate bone loss in vivo. KEY FINDINGS: In vitro cellular assays showed that Hed inhibited RANKL-induced osteoclast formation and osteoclast bone (hydroxyapatite) resorption as well as marker gene expression from BMM culture. Mechanistically, Hed attenuated RANKL-induced intracellular reactive oxygen species (ROS) production, and MAPK signaling pathway (ERK and p38) activation which curbed the downstream induction of c-Fos and NFATc1. Consistent with the in vitro findings, Hed administration effectively protected OVX mice from bone loss by reducing osteoclast number and activity on bone surface. SIGNIFICANCE: Our data provided promising evidence for the potential use of Hederagenin in the treatment of osteoclast-mediated osteolytic bone diseases such as postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea/prevenção & controle , Ácido Oleanólico/análogos & derivados , Osteogênese/efeitos dos fármacos , Ovariectomia/efeitos adversos , Substâncias Protetoras/farmacologia , Ligante RANK/metabolismo , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleanólico/farmacologia , Ligante RANK/genética , Transdução de Sinais
8.
Pharmacol Res ; 141: 541-550, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616017

RESUMO

Rutaecarpine is a bioactive alkaloid isolated from Evodia rutaecarpa (Wu Zhu Yu, Family: Rutaceae), a versatile medicinal herb which is clinically used to treat headache, abdominal pain, postpartum hemorrhage, dysentery, and amenorrhea in China. As one of the most representative indolopyridoquinazoline alkaloids of Evodia rutaecarpa, rutaecarpine has broad pharmacological actions in treating various cardiovascular, cerebrovascular, and metabolic diseases. The cardiovascular actions of rutaecarpine have aroused intense research interest due to its purported inotropic and chronotropic, vasodilatory, anti-platelet activation, anti-oxidant, anti-inflammatory, and lipid-lowering effects. Biochemical and pharmacological studies have illustrated the molecular targets of rutaecarpine, such as TRPV1, CGRP, AMPK, ABCA1, and ß1-AR. Furthermore, several rutaecarpine derivatives (such as bromorutaecarpine and fluororutaecarpine) have been shown to possess cardioprotective and vasculoprotective effects with improved safety profile. Hereby, we provide a systematic overview of pharmacological actions, toxicological effects, and molecular targets of rutaecarpine in cardiovascular disease prevention/treatment, aiming to exploit the therapeutic potential of rutaecarpine and its derivatives in treating cardiovascular diseases.


Assuntos
Cardiotônicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Evodia/química , Alcaloides Indólicos/farmacologia , Quinazolinas/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Humanos , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Alcaloides Indólicos/química , Alcaloides Indólicos/uso terapêutico , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Quinazolinas/química , Quinazolinas/uso terapêutico , Vasodilatadores/química , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico
9.
Front Pharmacol ; 10: 1587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038256

RESUMO

Osteolytic bone diseases, for example postmenopausal osteoporosis, arise from the imbalances between osteoclasts and osteoblasts in the bone remodeling process, whereby osteoclastic bone resorption greatly exceeds osteoblastic bone formation resulting in severe bone loss and deterioration in bone structure and microarchitecture. Therefore, the identification of agents that can inhibit osteoclast formation and/or function for the treatment of osteolytic bone disease has been the focus of bone and orthopedic research. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, has been shown to possess extensive biological and pharmacological benefits, but its effects on bone metabolism remains to be documented. Our study demonstrated for the first time, that Vin could inhibit osteoclast differentiation from bone marrow macrophages (BMMs) precursor cells as well as mature osteoclastic bone resorption. We further determined that the underlying molecular mechanism of action of Vin is in part due to its inhibitory effect against the activation of MAPK including p38, JNK, and ERK and intracellular reactive oxygen species (ROS) production. This effect ultimately suppressed the induction of c-Fos and NFATc1, which consequently downregulated the expression of the genes required for osteoclast formation and bone resorption. Consistent with our in vitro findings, in vivo administration of Vin protected mice against ovariectomy (OVX)-induced bone loss and trabecular bone deterioration. These results provided promising evidence for the potential therapeutic application of Vin as a novel treatment option against osteolytic diseases.

10.
J Inorg Biochem ; 179: 54-59, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175628

RESUMO

In the present study, a model of zinc deficiency was developed by exposing primary neurons to an N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN)-containing medium. The cell survival rate, apoptosis rate, intracellular and extracellular concentrations of 4 amino acids, and the expression of 2 glutamate receptor subtypes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (GluR2)and N-methyl-d-aspartate receptor subtype 2B (NR2B) were evaluated in zinc-deficient cells. The results revealed that zinc deficiency led to a decrease in cell viability and an increase in the apoptosis rate. Additionally, in cultured neurons, zinc deficiency led to an increase in the concentration of aspartic acid (Asp) and a decrease in the concentrations of glutamate (Glu), glycine (Gly), and gamma-aminobutyric acid (GABA). These changes were reversed by concurrent zinc supplementation. Furthermore, zinc deficiency led to an increase in the secreted amounts of Glu, Gly, and Asp but a decrease in secreted amounts of GABA, as measured using the concentrations of these amino acids in the cell-culture medium. These changes were partially reversed by zinc supplementation. Finally, zinc deficiency led to a significant decrease in GluR2 expression and an increase in NR2B expression in cultured neurons, whereas simultaneous treatment with zinc sulfate (ZnSO4) prevented these changes. These results suggest that zinc deficiency-induced neuronal death/apoptosis involves changes in the concentrations of 4 amino acid neurotransmitters and the expression of 2 glutamate receptor subtypes.


Assuntos
Aminoácidos/metabolismo , Apoptose/fisiologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Zinco/metabolismo , Animais , Quelantes/farmacologia , Etilenodiaminas/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Espaço Intracelular/metabolismo , Neurônios/citologia , Ratos Wistar , Receptores de AMPA/metabolismo
11.
J Trace Elem Med Biol ; 41: 66-74, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28347465

RESUMO

In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn2+ chelator, to establish a model of free Zn2+ deficiency in neurons. The effects of TPEN-mediated free Zn2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of INa, 3) shifted the INa activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K+ currents (IA) and delayed rectifier K+ currents (IK), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs.


Assuntos
Morte Celular/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Zinco/deficiência , Zinco/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Condutividade Elétrica , Etilenodiaminas/administração & dosagem , Etilenodiaminas/farmacologia , Transporte de Íons/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Zinco/administração & dosagem
12.
Zhong Yao Cai ; 37(2): 243-51, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-25095344

RESUMO

OBJECTIVE: To study the chemical constituents in the bark of Taxus chinensis var. mairei collected from southeast of China. METHODS: Chemical constituents were isolated and purified by column chromatography, Prep-TLC, and preparative HPLC. The structures were identified on the basis of 1D-and 2D-NMR spectral analysis. RESULTS: Twelve taxane diterpenoids were isolated from the bark of Taxus chinensis var. mairei grown in southeast of China. They were identified as: taxagifine (1), decinnamoyltaxagifine (2), 19-debenzoyl-19-acetyltaxinine M(3), 9-dihydro-13-acetyl-baccatin III (4), 7, 9-dideacetylbaccatin IV (5), 1,3-dihydro-taxinine (6), taxumairol C (7), taxezopidine J (8), 7-xylosyl-10-deacetyl-taxol A (9),10-deacetyltaxol (10), taxicin II (11), and 2alpha, 7beta, 10beta-triacetoxy-5alpha, 13alpha-dihydroxy-2 (3 --> 20) abeotaxa-4 (20), 11-dien-9-one (12). CONCLUSION: Compounds 1, 2, 4 - 6, 8, 9, 11 and 12 are obtained from this plant for the first time. Compound 7 is obtained from the bark of Taxus chinensis var. mairei for the first time.


Assuntos
Diterpenos/química , Casca de Planta/química , Plantas Medicinais/química , Taxus/química , China , Cromatografia Líquida de Alta Pressão , Diterpenos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Taxoides/química , Taxoides/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA