RESUMO
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Assuntos
Benzoquinonas/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Benzoquinonas/farmacologia , COVID-19/prevenção & controle , Comorbidade , Epigênese Genética , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/químicaRESUMO
Previous studies have shown that caffeine attenuates stress-induced mood dysfunction and memory deterioration through neuronal adenosine A2A receptors antagonism. However, whether caffeine exerts this effect through modulating other molecular targets, which interfere with the resilience to social defeat stress in adolescent male mice is unknown. This study was conducted to investigate the role of caffeine in the behavioral responses to social stress induced by the sensory contact model (SCM) and the possible alteration of the gene expression level of Na/K ATPase pump. Adolescent male mice were exposed to SCM for 12 days. Caffeine was administered intraperitoneal daily for 14 days after SCM. The time spent in interaction zone, social interaction ratio, preference index to novel objects, time spent in the open arms and immobility time in forced swimming test were used to measure the locomotor activity, social avoidance, short-term memory, anxiety and depression in mice. The results showed that chronic treatment with caffeine for 14 days improved locomotor activity, reversed the avoidance of social behavior, improved preference to novel objects, and reversed depression induced by social defeat stress in adolescent male mice, suggesting the enhancement of the resilience to social defeat stress induced by caffeine. Moreover, caffeine treatment did alter gene expression levels of Na/K ATPase isoforms in both prefrontal cortex and hippocampus. Altered gene expression was significant in most cases and correlates with the observed behavioral changes. Taken together, our findings provide new insight into the effects of chronic caffeine administration on locomotor activity, social avoidance, short-term memory and depression in adolescent male mice exposed to SCM.