Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Sport Nutr Exerc Metab ; 33(4): 189-197, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37225168

RESUMO

Branched-chain amino acids (BCAA) and carbohydrate (CHO) are commonly recommended postexercise supplements. However, no study has examined the interaction of CHO and BCAA ingestion on myofibrillar protein synthesis (MyoPS) rates following exercise. We aimed to determine the response of MyoPS to the co-ingestion of BCAA and CHO following an acute bout of resistance exercise. Ten resistance-trained young men completed two trials in counterbalanced order, ingesting isocaloric drinks containing either 30.6-g CHO plus 5.6-g BCAA (B + C) or 34.7-g CHO alone following a bout of unilateral, leg resistance exercise. MyoPS was measured postexercise with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre- and 4 hr postdrink ingestion. Blood samples were collected at time points before and after drink ingestion. Serum insulin concentrations increased to a similar extent in both trials (p > .05), peaking at 30 min postdrink ingestion. Plasma leucine (514 ± 34 nmol/L), isoleucine (282 ± 23 nmol/L), and valine (687 ± 33 nmol/L) concentrations peaked at 0.5 hr postdrink in B + C and remained elevated for 3 hr during exercise recovery. MyoPS was ∼15% greater (95% confidence interval [-0.002, 0.028], p = .039, Cohen's d = 0.63) in B + C (0.128%/hr ± 0.011%/hr) than CHO alone (0.115%/hr ± 0.011%/hr) over the 4 hr postexercise period. Co-ingestion of BCAA and CHO augments the acute response of MyoPS to resistance exercise in trained young males.


Assuntos
Aminoácidos de Cadeia Ramificada , Treinamento Resistido , Masculino , Humanos , Carboidratos da Dieta/metabolismo , Leucina , Ingestão de Alimentos , Músculo Esquelético/metabolismo
2.
Int J Sport Nutr Exerc Metab ; 31(3): 292-301, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741748

RESUMO

Branched-chain amino acids (BCAA) are one of the most popular sports supplements, marketed under the premise that they enhance muscular adaptations. Despite their prevalent consumption among athletes and the general public, the efficacy of BCAA has been an ongoing source of controversy in the sports nutrition field. Early support for BCAA supplementation was derived from extrapolation of mechanistic data on their role in muscle protein metabolism. Of the three BCAA, leucine has received the most attention because of its ability to stimulate the initial acute anabolic response. However, a substantial body of both acute and longitudinal research has now accumulated on the topic, affording the ability to scrutinize the effects of BCAA and leucine from a practical standpoint. This article aims to critically review the current literature and draw evidence-based conclusions about the putative benefits of BCAA or leucine supplementation on muscle strength and hypertrophy as well as illuminate gaps in the literature that warrant future study.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Suplementos Nutricionais , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fatores Etários , Aminoácidos de Cadeia Ramificada/administração & dosagem , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Humanos , Leucina/administração & dosagem , Leucina/farmacologia , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treinamento Resistido
3.
Physiol Rep ; 8(16): e14529, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845565

RESUMO

Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Hiperfagia/metabolismo , Músculo Esquelético/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Adolescente , Adulto , Ceramidas/metabolismo , Humanos , Masculino , Estresse Oxidativo , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Int J Sport Nutr Exerc Metab ; 28(1): 26-36, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871832

RESUMO

Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil-derived n-3PUFA, protein, and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine, and carbohydrate containing beverage over a six-week supplementation period on physiological markers of recovery measured over three days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200 mL): a fish oil supplement beverage (FO; n = 10) that contained n-3PUFA (1100 mg DHA/EPA-approximately 550 mg DHA, 550 mg EPA), whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); a protein supplement beverage (PRO; n = 10) that contained whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); and a carbohydrate supplement beverage (CHO; n = 10) that contained carbohydrate (24 g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72-hour recovery period following eccentric exercise (p < 0.05). Muscle soreness, expressed as area under the curve (AUC) during 72-hour recovery, was less in FO (1948 ± 1091 mm × 72 h) than PRO (4640 ± 2654 mm × 72 h, p < 0.05) and CHO (4495 ± 1853 mm × 72 h, p = 0.10). Blood concentrations of creatine kinase, expressed as AUC, were ~60% lower in FO compared to CHO (p < 0.05) and tended to be lower (~39%, p = 0.07) than PRO. No differences in muscle function, soccer performance, or blood c-reactive protein concentrations were observed between groups. In conclusion, the addition of n-3PUFA to a beverage containing whey protein, leucine, and carbohydrate ameliorates the increase in muscle soreness and blood concentrations of creatine kinase following eccentric exercise in competitive soccer players.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Mialgia/terapia , Futebol , Fenômenos Fisiológicos da Nutrição Esportiva , Atletas , Proteína C-Reativa/análise , Creatina Quinase/sangue , Carboidratos da Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Leucina/administração & dosagem , Masculino , Músculo Esquelético/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Adulto Jovem
6.
Physiol Rep ; 4(6)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27009278

RESUMO

Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic-hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of L-[ring-(13)C6] phenylalanine was used to measure basal myofibrillar MP Sat rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX).MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased pan PKB activity at RESTin the FO group but not the CO group. There was a significant increase from REST at post-RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS.


Assuntos
Anabolizantes/administração & dosagem , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Treinamento Resistido , Proteínas Quinases Ativadas por AMP/metabolismo , Biópsia , Humanos , Masculino , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Escócia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
7.
Sports Med ; 45 Suppl 1: S93-104, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26553492

RESUMO

Nutrition is one method to counter the negative impact of an exercise-induced injury. Deficiencies of energy, protein and other nutrients should be avoided. Claims for the effectiveness of many other nutrients following injuries are rampant, but the evidence is equivocal. The results of an exercise-induced injury may vary widely depending on the nature of the injury and severity. Injuries typically result in cessation, or at least a reduction, in participation in sport and decreased physical activity. Limb immobility may be necessary with some injuries, contributing to reduced activity and training. Following an injury, an inflammatory response is initiated and while excess inflammation may be harmful, given the importance of the inflammatory process for wound healing, attempting to drastically reduce inflammation may not be ideal for optimal recovery. Injuries severe enough for immobilization of a limb result in loss of muscle mass and reduced muscle strength and function. Loss of muscle results from reductions in basal muscle protein synthesis and the resistance of muscle to anabolic stimulation. Energy balance is critical. Higher protein intakes (2-2.5 g/kg/day) seem to be warranted during immobilization. At the very least, care should be taken not to reduce the absolute amount of protein intake when energy intake is reduced. There is promising, albeit preliminary, evidence for the use of omega-3 fatty acids and creatine to counter muscle loss and enhance hypertrophy, respectively. The overriding nutritional recommendation for injured exercisers should be to consume a well-balanced diet based on whole, minimally processed foods or ingredients made from whole foods. The diet composition should be carefully assessed and changes considered as the injury heals and activity patterns change.


Assuntos
Traumatismos em Atletas/dietoterapia , Aminoácidos/administração & dosagem , Antioxidantes/administração & dosagem , Traumatismos em Atletas/fisiopatologia , Creatina/administração & dosagem , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Ingestão de Energia , Exercício Físico/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Imobilização , Inflamação/fisiopatologia , Cicatrização
8.
Prostaglandins Leukot Essent Fatty Acids ; 90(6): 199-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24726616

RESUMO

The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week control period, 10 healthy male participants consumed 5 g d(-1) of fish oil (FO) for 4 weeks. Muscle biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid composition was increased from W0 to W1 and remained elevated for the remaining time points. Total protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2 and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Lipídeos/sangue , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Anabolizantes/administração & dosagem , Proteínas de Ciclo Celular , Quinase 1 de Adesão Focal/metabolismo , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
9.
Int J Sport Nutr Exerc Metab ; 24(4): 437-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24667103

RESUMO

Many athletes use dietary supplements, with use more prevalent among those competing at the highest level. Supplements are often self-prescribed, and their use is likely to be based on an inadequate understanding of the issues at stake. Supplementation with essential micronutrients may be useful when a diagnosed deficiency cannot be promptly and effectively corrected with food-based dietary solutions. When used in high doses, some supplements may do more harm than good: Iron supplementation, for example, is potentially harmful. There is good evidence from laboratory studies and some evidence from field studies to support health or performance benefits from appropriate use of a few supplements. The available evidence from studies of aquatic sports is small and is often contradictory. Evidence from elite performers is almost entirely absent, but some athletes may benefit from informed use of creatine, caffeine, and buffering agents. Poor quality assurance in some parts of the dietary supplements industry raises concerns about the safety of some products. Some do not contain the active ingredients listed on the label, and some contain toxic substances, including prescription drugs, that can cause health problems. Some supplements contain compounds that will cause an athlete to fail a doping test. Supplement quality assurance programs can reduce, but not entirely eliminate, this risk.


Assuntos
Desempenho Atlético , Suplementos Nutricionais , Natação , Bicarbonatos/administração & dosagem , Cafeína/administração & dosagem , Creatina/administração & dosagem , Suplementos Nutricionais/normas , Dopagem Esportivo , Humanos , Micronutrientes/administração & dosagem , Esportes
10.
Artigo em Inglês | MEDLINE | ID: mdl-23765350

RESUMO

Injuries are an unavoidable aspect of participation in physical activity. Nutrition is important for optimal wound healing and recovery, but little information about nutritional support for injuries exists. Immediately following injury, wound healing begins with an inflammatory response. Excessive anti-inflammatory measures may impair recovery. Many injuries result in limb immobilization. Immobilization results in muscle loss due to increased periods of negative muscle protein balance from decreased basal muscle protein synthesis and resistance to anabolic stimuli, including protein ingestion. Oxidative capacity of muscle is also decreased. Nutrient and energy deficiencies should be avoided. Energy expenditure may be reduced during immobilization, but inflammation, wound healing and the energy cost of ambulation limit the reduction of energy expenditure. There is a theoretical rationale for leucine and omega-3 fatty acid supplementation to help reduce muscle atrophy. During rehabilitation and recovery from immobilization, increased activity, in particular resistance exercise will increase muscle protein synthesis and restore sensitivity to anabolic stimuli. Ample, but not excessive, protein and energy must be consumed to support muscle growth. During rehabilitation and recovery, nutritional needs are very much like those for any athlete desiring muscle growth. The most important consideration is to avoid malnutrition and to apply a risk/benefit approach.


Assuntos
Dieta , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Leucina/administração & dosagem , Músculo Esquelético/metabolismo , Cicatrização , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Humanos , Inflamação , Proteínas Musculares/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Necessidades Nutricionais , Estado Nutricional
11.
Med Sci Sports Exerc ; 42(5): 962-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19997002

RESUMO

PURPOSE: The purpose of this study was to examine the role of branched-chain amino acid (BCAA) supplementation during recovery from intense eccentric exercise. METHODS: Twenty-four non-weight-trained males were assigned to one of two groups: one group (supplementary, SUP) ingested BCAA beverages (n = 12); the second group (placebo, PLA) ingested artificially flavored water (n = 12). Diet was controlled throughout the testing period to match habitual intake. The eccentric exercise protocol consisted of 12 x 10 repetitions of unilateral eccentric knee extension exercise at 120% concentric one repetition maximum. On the day of the exercise, supplements were consumed 30 min before exercise, 1.5 h after exercise, between lunch and dinner, and before bed. On the following 2 d, four supplements were consumed between meals. Muscle soreness, muscle function, and putative blood markers of muscle damage were assessed before and after (1, 8, 24, 48, and 72 h) exercise. RESULTS: Muscle function decreased after the eccentric exercise (P < 0.0001), but the degree of force loss was unaffected by BCAA ingestion (51% +/- 3% with SUP vs -48% +/- 7% with PLA). A decrease in flexed muscle soreness was observed in SUP compared with PLA at 48 h (21 +/- 3 mm vs 32 +/- 3 mm, P = 0.02) and 72 h (17 +/- 3 mm vs 27 +/- 4 mm, P = 0.038). Flexed muscle soreness, expressed as area under the curve, was lower in SUP than in PLA (P = 0.024). CONCLUSIONS: BCAA supplementation may attenuate muscle soreness, but it does not ameliorate eccentric exercise-induced decrements in muscle function or increases in reputed blood markers of muscle damage, when consumed before exercise and for 3 d after an eccentric exercise bout.


Assuntos
Aminoácidos de Cadeia Ramificada/uso terapêutico , Exercício Físico/fisiologia , Músculo Esquelético/efeitos dos fármacos , Dor/tratamento farmacológico , Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/metabolismo , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético/imunologia , Músculo Esquelético/fisiopatologia , Dor/etiologia , Método Simples-Cego , Reino Unido
12.
Med Sci Sports Exerc ; 42(6): 1140-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19997018

RESUMO

PURPOSE: The aim of this study was to determine whether adding protein to a CHO beverage would improve late-exercise cycle time-trial performance over CHO alone. Furthermore, we examined the effects of coingesting protein with CHO during exercise on postexercise markers of sarcolemmal disruption and the recovery of muscle function. METHODS: In a double-blind, crossover design, 12 trained male cyclists performed 120 min of steady-state (SS) cycling at approximately 55% VO2max followed by a time trial lasting approximately 1 h. At 15-min intervals during SS exercise, participants consumed either a CHO or a CHO + protein (CHO + Pro) beverage (providing 65 g x h(-1) CHO or 65 g x h(-1) CHO plus 19 g x h(-1) protein). Twenty-four hours after the onset of the SS cycle, participants completed a maximum isometric strength test. At rest and 24 h postexercise, a visual analog scale was used to determine lower-limb muscle soreness, and blood samples were obtained for plasma creatine kinase concentration. Dietary control was implemented 24 h before and during the time course of each trial. RESULTS: Average power output sustained during time trial was similar for CHO and CHO + Pro, with no effect of treatment on the time to complete the time trial (60:13 +/- 1:33 and 60:51 +/- 2:40 (min:s) for CHO and CHO + Pro, respectively). Postexercise isometric strength significantly declined for CHO (15% +/- 3%) and CHO + Pro (11% +/- 3%) compared with baseline (486 +/- 28 N). Plasma creatine kinase concentrations, and visual analog scale soreness significantly increased at 24 h postexercise, with no difference between treatments. CONCLUSIONS: The present findings suggest that CHO + Pro coingestion during exercise does not improve late-exercise time-trial performance, ameliorate markers of sarcolemmal disruption, or enhance the recovery of muscle function at 24 h postexercise over CHO alone.


Assuntos
Carboidratos da Dieta , Proteínas Alimentares , Suplementos Nutricionais , Teste de Esforço , Exercício Físico/fisiologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Tolerância ao Exercício , Humanos , Masculino , Adulto Jovem
13.
Curr Sports Med Rep ; 8(4): 186-91, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19584605

RESUMO

Several nutritional strategies have been used in cycling to improve performance. Carbohydrate feeding during exercise has been shown to be effective, but recent studies have suggested that recommendations may have to be adjusted to take into account recent findings. Protein co-ingested with carbohydrate during exercise has received a lot of recent interest, but the evidence is equivocal, at best. Thus, in the absence of a plausible mechanism, it is difficult to see how protein would increase endurance performance. There also has been a lot of interest in training with low glycogen to maximize training adaptations, but the longer-term effects upon performance are still unclear. Various supplements have been suggested to improve endurance performance, but most of these nutrition supplements lack the scientific support that would warrant the recommendation.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Suplementos Nutricionais , Medicina Baseada em Evidências , Desempenho Atlético/legislação & jurisprudência , Ciclismo/legislação & jurisprudência , Humanos , Reino Unido
14.
Essays Biochem ; 44: 85-98, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18384284

RESUMO

Muscle mass is critical for athletic performance and, perhaps more importantly for most, health and survival. The metabolic basis for a change in muscle mass is an increase in net muscle protein balance (termed NBAL). NBAL is the difference between MPS (muscle protein synthesis) and MPB (muscle protein breakdown). Thus an increase in MPS and/or a decrease in MPB are necessary for NBAL to increase, leading to accretion of muscle proteins. In particular, accretion of myofibrillar proteins is necessary. NBAL responds to exercise, feeding and other factors. In healthy, weight-stable adults, muscle mass remains constant because periods of positive balance following feeding are countered by periods of negative balance during fasting. A combination of resistance exercise and nutrition is a potent anabolic stimulus through stimulation of MPS from amino acids and attenuation of MPB by carbohydrates. Increased muscle mass results from the accumulation of small amounts of protein in response to each bout of exercise combined with nutrient intake. The magnitude of the response may be influenced by factors other than just the amount of a nutrient ingested. Timing of ingestion, co-ingestion of nutrients and the type of protein may all influence protein accretion. Testosterone is a potent anabolic stimulus primarily through improvement in re-utilization of amino acids from MPB. There is a general lack of efficacy in studies assessing the potential for growth hormone, androstenedione and dehydroepiandrostenedione to increase muscle mass. Creatine supplementation is clearly an effective means to increase muscle mass, especially in combination with resistance exercise, however the mechanisms remain unclear. Results from acute metabolic studies provide useful information for estimation of the efficacy of anabolic agents.


Assuntos
Anabolizantes/administração & dosagem , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Fenômenos Fisiológicos da Nutrição , Suplementos Nutricionais , Alimentos/normas , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento
15.
J Sports Sci ; 25 Suppl 1: S5-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18049979

RESUMO

The primary roles for nutrition in sprints are for recovery from training and competition and influencing training adaptations. Sprint success is determined largely by the power-to-mass ratio, so sprinters aim to increase muscle mass and power. However, extra mass that does not increase power may be detrimental. Energy and protein intake are important for increasing muscle mass. If energy balance is maintained, increased mass and strength are possible on a wide range of protein intakes, so energy intake is crucial. Most sprinters likely consume ample protein. The quantity of energy and protein intake necessary for optimal training adaptations depends on the individual athlete and training demands; specific recommendations for all sprinters are, at best, useless, and are potentially harmful. However, if carbohydrate and fat intake are sufficient to maintain energy levels, then increased protein intake is unlikely to be detrimental. The type and timing of protein intake and nutrients ingested concurrently must be considered when designing optimal nutritional strategies for increasing muscle mass and power. On race day, athletes should avoid foods that result in gastrointestinal discomfort, dehydration or sluggishness. Several supplements potentially influence sprint training or performance. Beta-alanine and bicarbonate may be useful as buffering agents in longer sprints. Creatine may be efficacious for increasing muscle mass and strength and perhaps increasing intensity of repeat sprint performance during training.


Assuntos
Desempenho Atlético , Proteínas Alimentares , Suplementos Nutricionais , Necessidades Nutricionais , Corrida/fisiologia , Carboidratos da Dieta , Metabolismo Energético , Humanos , Músculo Esquelético/fisiologia
16.
Clin Sports Med ; 26(1): 17-36, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17241913

RESUMO

Protein nutrition for athletes has long been a topic of interest. From the legendary Greek wrestler Milo--purported to eat copious amounts of beef during his five successive Olympic titles--to modern athletes consuming huge amounts of supplements, protein intake has been considered paramount. Recommendations for protein intake for athletes has not been without controversy, however. In general, scientific opinion on this controversy seems to divide itself into two camps--those who believe participation in exercise and sport increases the nutritional requirement for protein and those who believe protein requirements for athletes and exercising individuals are no different from the requirements for sedentary individuals. There seems to be evidence for both arguments. Although this issue may be scientifically relevant, from a practical perspective, the requirement for protein-as most often defined-may not be applicable to most athletes.


Assuntos
Proteínas Alimentares/administração & dosagem , Exercício Físico/fisiologia , Necessidades Nutricionais , Esportes/fisiologia , Animais , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Metabolismo Energético , Comportamento Alimentar , Feminino , Humanos , Masculino , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Projetos de Pesquisa/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA