Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 187: 114595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554841

RESUMO

This study employed a comprehensive approach to validate the hepatoprotective potential of phytoconstituents from Cichorium intybus leaves. In vitro, in vivo and in silico techniques were used to confirm the protective effects on liver enzymes. In vitro antioxidant assessment revealed the highest potential in the hydroethanolic leaf extract compared to aqueous and methanolic extracts. The study further investigated the ameliorative efficacy of the hydro-ethanolic extract (HECL) in male Wistar rats exposed to lead (50 mg/kg b wt.) and nickel (4.0 mg/kg b wt.) individually and in combination for 90 days. HECL at 250 mg/kg b wt. mitigated hepatic injury, oxidative stress, DNA fragmentation, ultrastructural and histopathological alterations induced by lead and nickel. Molecular docking explored the interaction of 28 phytoconstituents from C. intybus with hepatoprotective protein targets. Cyanidin and rutin exhibited the highest affinity for liver corrective enzymes among the screened phytoconstituents. These findings underscore the liver corrective potential of C. intybus leaf phytoconstituents, shedding light on their molecular interactions with hepatoprotective targets. This research contributes valuable insights into the therapeutic applications of C. intybus in liver protection.


Assuntos
Cichorium intybus , Masculino , Ratos , Animais , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Níquel , Ratos Wistar , Antioxidantes/química , Fígado
2.
3 Biotech ; 14(2): 47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268987

RESUMO

Finger millet, being rich source of essential minerals like iron and zinc, is an ideal model to identify candidate genes contributing to high grain iron content (GIC) and zinc content (GZC) in plants. Hence, finger millet diversity panel comprised of 202 genotypes was evaluated in two geographical locations and found to have a wide variation for GIC and GZC. A genome-wide association study using 2977 single nucleotide polymorphism (SNP) markers identified reliable marker-trait associations (MTAs). The use of general linear model (GLM) and mixed linear model (MLM) approaches revealed 5 and 8 common MTAs linked to GIC and GZC, respectively, for both Almora and Pantnagar locations, with a high level of significance (P < 0.01). However, 12 significant MTAs were found to be linked with GIC for Pantnagar location alone. The MTAs were associated with specific genes that produce ferritin (Fer1), iron-regulated transporter-like protein (IRT2), and yellow stripe-like 2 proteins (YSL2). These genes are likely linked to GIC variation in finger millet. Additionally, the variation in GZC in finger millet was connected to genes that encode zinc transporters, namely ZIP1 protein (ZIP1) and ZTP29-like protein (ZTP29). Compared to low GIC and GZC genotypes, high GIC and GZC genotypes exhibited greater relative expression of these genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03889-1.

3.
Biopharm Drug Dispos ; 45(1): 15-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243990

RESUMO

Drug metabolism plays a crucial role in drug fate, including therapeutic inactivation or activation, as well as the formation of toxic compounds. This underscores the importance of understanding drug metabolism in drug discovery and development. Considering the substantial costs associated with traditional drug development methods, computational approaches have emerged as valuable tools for predicting the metabolic fate of drug candidates. With this in mind, the present study aimed to investigate the potential mechanisms underlying the modulation of microsomal cytochrome P450 3A1 (CYP3A1) enzyme activity by various phytochemicals found in Cichorium intybus L., commonly known as chicory. To achieve this goal, several in silico methods, including molecular docking and molecular dynamics (MD) simulation, were employed to explore computationally the microsomal CYP3A1 enzyme. Schrodinger software was utilized for the molecular docking study, which involved the interaction analysis between CYP3A1 and 28 phytoconstituents of Cichorium intybus. Virtual screening of 28 compounds from chicory led to the identification of the top five ranked compounds. These compounds were evaluated for drug-likeness properties, pharmacokinetic profiles, and predicted binding affinities to CYP3A1. Caffeoylshikimic acid and cichoric acid emerged as promising candidates due to their favorable characteristics, including good oral bioavailability and high binding affinities to CYP3A1. Molecular dynamics simulations were conducted to assess the stability of caffeoylshikimic acid within the CYP3A1 binding pocket. The results demonstrated that caffeoylshikimic acid maintained stable interactions with the enzyme throughout the simulation, suggesting its potential as an effective modulator of CYP3A1 activity. The findings of this study have the potential to provide valuable insights into the complex molecular mechanisms by which Cichorium intybus L. acts on hepatocytes and modulates CYP3A1 enzyme expression or activity. By elucidating the impact of these phytochemicals on drug metabolism, this research contributes to our understanding of how chicory may interact with drugs and influence their efficacy and safety profiles.


Assuntos
Cichorium intybus , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos/metabolismo , Compostos Fitoquímicos
4.
Sci Rep ; 13(1): 1729, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720989

RESUMO

Researchers discovered that diets rich in anthocyanin-rich fruits and vegetables significantly impacted gut flora. To conclude, large-scale randomized controlled clinical trials are challenging to conduct; therefore, merging data from multiple small studies may aid. A systematic review collects and analyses all research on a particular subject and design. This comprehensive review and meta-analysis examined the influence of dietary anthocyanins on Firmicutes/Bacteroide (Fir/Bac) and short-chain fatty acids (SCFAs) content. The current meta-analysis followed the guidelines of PRISMA-the preferred reporting items for systematic reviews and meta-analyses. Diets high in anthocyanins substantially reduced the Fir/Bac ratio in the assessed trials. Among three SCFAs, the highest impact was observed on acetic acid, followed by propionic acid, and then butanoic acid. The meta-analysis results also obtained sufficient heterogeneity, as indicated by I2 values. There is strong evidence that anthocyanin supplementation improves rodent gut health biomarkers (Fir/Bac and SCFAs), reducing obesity-induced gut dysbiosis, as revealed in this systematic review/meta-analysis. Anthocyanin intervention duration and dosage significantly influenced the Fir/Bac ratio and SCFA. Anthocyanin-rich diets were more effective when consumed over an extended period and at a high dosage.


Assuntos
Antocianinas , Ácidos Graxos Voláteis , Ácido Acético , Bacteroidetes/genética , Firmicutes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA