Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(1): 51-68, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733835

RESUMO

The present study explores the possible function of gibberellic acid (GA: 20 µM) in reducing salt (NaCl) induced toxicity in two diazo-trophic cyanobacteria i.e. Nostoc muscorum and Phormidium foveolarum. The physiological and biochemical parameters viz. growth, photosynthetic pigments (chlorophyll a, carotenoids, and phycocyanin), photosynthetic and respiratory rates, oxidative stress biomarkers (superoxide radicle, hydrogen peroxide, and malondialdehyde contents) antioxidant activities (superoxide dismutase, peroxidase, catalase, and glutathione-S-transferase) and non-enzymatic antioxidants were studied under both the doses i.e. 40 mM (LC 10) and  mM (LC 30) of NaCl. The growth, photosynthetic pigments and photosynthetic rate were found to be declined under concentration-dependent manner of NaCl. Contrastingly, the respiratory rate, oxidative stress biomarkers, and the activity of antioxidant enzymes i.e. superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), and glutathione-S-transferase (GST) together with contents of non-enzymatic antioxidants (proline and cysteine) were found to increase in the test cyanobacteria. PSII photochemistry in both the cyanobacteria was negatively affected showing an inhibitory effect of NaCl on JIP parameters, while an enhancement effect was noticed in the values related to energy flux parameters. Further, the addition of GA to the growth medium caused an alleviating effect as it completely mitigated NaCl toxicity induced by a lower dose i.e. 40 mM of NaCl, while it partially alleviated the growth and photosynthetic parameters of 80 mM NaCl stressed cyanobacteria. Supplementation of GA significantly reduced the contents of oxidative stress tested cyanobacteria due to an improved antioxidant system (increased activities of enzymatic and non-enzymatic antioxidants) as evident from the biochemical analysis. In brief, our findings reflect the possible role of GA as a potential modulator of salt toxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01266-5.

2.
BMC Microbiol ; 20(1): 206, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660415

RESUMO

BACKGROUND: Cyanobacteria are well known for their inherent ability to serve as atmospheric nitrogen fixers and as bio-fertilizers; however, increased contaminants in aquatic ecosystem significantly decline the growth and function of these microbes in paddy fields. Plant growth regulators play beneficial role in combating the negative effects induced by heavy metals in photoautotroph. Current study evaluates the potential role of indole acetic acid (IAA; 290 nm) and kinetin (KN; 10 nm) on growth, nitrogen metabolism and biochemical constituents of two paddy field cyanobacteria Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120 exposed to two concentrations of chromium (CrVI; 100 µM and 150 µM). RESULTS: Both the tested doses of CrVI declined the growth, ratio of chlorophyll a to carotenoids (Chl a/Car), contents of phycobiliproteins; phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE), protein and carbohydrate associated with decrease in the inorganic nitrogen (nitrate; NO3- and nitrite; NO2-) uptake rate that results in the decrease in nitrate and ammonia assimilating enzymes; nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) except glutamate dehydrogenase (GDH). However, exogenous supplementation of IAA and KN exhibited alleviating effects on growth, nitrogen metabolism and exopolysaccharide (EPS) (first protective barrier against metal toxicity) contents in both the cyanobacteria, which probably occurred as a result of a substantial decrease in the Cr uptake that lowers the damaging effects. CONCLUSION: Overall result of the present study signifies affirmative role of the phytohormone in minimizing the toxic effects induced by chromium by stimulating the growth of cyanobacteria thereby enhancing its ability as bio-fertilizer that improved fertility and productivity of soil even in metal contaminated condition.


Assuntos
Proteínas de Bactérias/metabolismo , Cromo/toxicidade , Cianobactérias/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Polissacarídeos Bacterianos/metabolismo , Anabaena/química , Anabaena/efeitos dos fármacos , Anabaena/crescimento & desenvolvimento , Carotenoides/análise , Clorofila A/análise , Cianobactérias/química , Cianobactérias/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Cinetina/farmacologia , Nitrogênio/metabolismo , Ficocianina/análise , Estresse Fisiológico
3.
Ecotoxicol Environ Saf ; 161: 296-304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890431

RESUMO

The present study was undertaken to evaluate the metal toxicity alleviating effects of kinetin (KN, 10 nM) on growth, photosynthetic pigments and photochemistry of PS II in the cyanobacterium Nostoc muscorum exposed to chromium (CrVI) stress (100 and 150 µM). Chromium declined growth, photosynthetic pigments (chlorophyll a, phycocyanin and carotenoids), photosynthetic oxygen evolution rate and parameters of fluorescence kinetics (ϕP0, FV/F0, ϕE0, Ψ0 and PIABS except F0/FV) in concentration dependent manner, while stimulating effects on respiration, energy flux parameters (ABS/RC, TR0/RC, ET0/RC and DI0/RC), oxidative stress biomarkers i.e., superoxide radical (SOR), hydrogen peroxide (H2O2) and lipid peroxidation (TBARS contents) and antioxidative enzymes: superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutathione-S-transferase (GST), were observed. However, upon addition of KN in the growth medium an alleviating effect against chromium induced toxicity on growth, photosynthetic pigments and photochemistry of PS II was recorded. This had occurred due to substantial reduction in levels of oxidative stress biomarkers: SOR, H2O2 and TBARS contents with concomitant rise in activity of antioxidative enzymes: SOD, POD, CAT and GST and appreciable lowering in the cellular accumulation of chromium. The overall results demonstrate that KN application significantly alleviated chromium induced toxicity on growth performance of the cyanobacterium N. muscorum due to significant improvement in photosynthetic pigments and photochemistry of PS II by up-regulating the activity of antioxidative enzymes, and declining cellular accumulation of chromium. Furthermore, Cr induced toxicity at lower dose (100 µM) was found to be ameliorated more efficiently in N. muscorum following supplementation of KN.


Assuntos
Antioxidantes/metabolismo , Cromo/toxicidade , Cinetina/farmacologia , Nostoc muscorum/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Poluentes Químicos da Água/toxicidade , Clorofila A/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nostoc muscorum/crescimento & desenvolvimento , Nostoc muscorum/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotoquímica , Fotossíntese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA