Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(7): e2104625, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882972

RESUMO

High-Ni-rich layered oxides [e.g., LiNix Coy Mnz O2 ; x > 0.5, x + y + z = 1] are considered one of the most promising cathodes for high-energy-density lithium-ion batteries (LIB). However, extreme electrode-electrolyte reactions, several interfacial issues, and structural instability restrict their practical applicability. Here, a shortened unconventional atomic surface reduction (ASR) technique is demonstrated on the cathode surface as a derivative of the conventional atomic layer deposition (ALD) process, which brings superior cell performances. The atomic surface reaction (reduction process) between diethyl-zinc (as a single precursor) and Ni-rich NMC cathode [LiNi0.8 Co0.1 Mn0.1 O2 ; NCM811] material is carried out using the ALD reactor at different temperatures. The temperature dependency of the process through advanced spectroscopy and microscopy studies is demonstrated and it is shown that thin surface film is formed at 100 °C, whereas at 200 °C a gradual atomic diffusion of Zn ions from the surface to the near-surface regions is taking place. This unique near-surface penetration of Zn ions significantly improves the electrochemical performance of the NCM811 cathode. This approach paves the way for utilizing vapor phase deposition processes to achieve both surface coatings and near-surface doping in a single reactor to stabilize high-energy cathode materials.

2.
Proc Natl Acad Sci U S A ; 115(23): E5419-E5428, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784829

RESUMO

Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus Solanum, and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3ß-hydroxysteroid dehydrogenase/Δ5,4 isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, GAME25 down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpressing the tomato GAME25 in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity.


Assuntos
Alcaloides/biossíntese , Saponinas/biossíntese , Solanaceae/química , Alcaloides/química , Regulação da Expressão Gênica de Plantas/genética , Glicosídeos/biossíntese , Glicosídeos/química , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxirredutases/metabolismo , Extratos Vegetais/química , Plantas Geneticamente Modificadas/metabolismo , Saponinas/química , Saponinas/metabolismo , Solanaceae/metabolismo , Esteroides/química , Tomatina/análogos & derivados , Tomatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA