Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 65(9): e2000863, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33651486

RESUMO

SCOPE: Nutritional supplementation of the maternal diet can modify the cancer susceptibility in adult offspring. Therefore, the authors evaluate the effects of a fish-oil diet administered to a long-term, during pre-mating, gestation, and lactation, in reducing cancer-cachexia damages in adult Walker-256 tumor-bearing offspring. METHODS AND RESULTS: Female rats receive control or fish oil diet during pre-mating, gestation, and lactation. After weaning, male offspring are fed the control diet until adulthood and distributed in (C) control adult-offspring; (W) adult tumor-bearing offspring; (OC) adult-offspring of maternal fish oil diet; (WOC) adult tumor-bearing offspring of maternal fish oil diet groups. Fat body mass is preserved, muscle expression of mechanistic target of rapamicin (mTOR) and eukariotic binding protein of eukariotic factor 4E (4E-BP1) is modified, being associated with lower 20S proteasome protein expression, and the liver alanine aminotransferase (ALT) enzyme content maintained in the WOC group. Also, the OC group shows reduced triglyceridemia. CONCLUSION: In this experimental model of cachexia, the long-term maternal supplementation is a positive strategy to improve liver function and lipid metabolism, as well as to modify muscle proteins expression in the mTOR pathway and also reduce the 20S muscle proteasome protein, without altering the tumor development and muscle wasting in adult tumor-bearing offspring.


Assuntos
Caquexia/prevenção & controle , Carcinoma 256 de Walker/complicações , Óleos de Peixe/administração & dosagem , Alanina Transaminase/metabolismo , Animais , Composição Corporal , Carcinoma 256 de Walker/metabolismo , Suplementos Nutricionais , Feminino , Lactação , Masculino , Proteínas Musculares/metabolismo , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/fisiologia , Triglicerídeos/sangue
2.
J Neuroinflammation ; 14(1): 178, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865476

RESUMO

BACKGROUND: The consumption of large amounts of dietary fats can trigger an inflammatory response in the hypothalamus and contribute to the dysfunctional control of caloric intake and energy expenditure commonly present in obesity. The objective of this study was to identify chemokine-related transcripts that could be involved in the early stages of diet-induced hypothalamic inflammation. METHODS: We used immunoblot, PCR array, real-time PCR, immunofluorescence staining, glucose and insulin tolerance tests, and determination of general metabolic parameters to evaluate markers of inflammation, body mass variation, and glucose tolerance in mice fed a high-fat diet. RESULTS: Using a real-time PCR array, we identified leukemia inhibitory factor as a chemokine/cytokine undergoing a rapid increase in the hypothalamus of obesity-resistant and a rapid decrease in the hypothalamus of obesity-prone mice fed a high-fat diet for 1 day. We hypothesized that the increased hypothalamic expression of leukemia inhibitory factor could contribute to the protective phenotype of obesity-resistant mice. To test this hypothesis, we immunoneutralized hypothalamic leukemia inhibitory factor and evaluated inflammatory and metabolic parameters. The immunoneutralization of leukemia inhibitory factor in the hypothalamus of obesity-resistant mice resulted in increased body mass gain and increased adiposity. Body mass gain was mostly due to increased caloric intake and reduced spontaneous physical activity. This modification in the phenotype was accompanied by increased expression of inflammatory cytokines in the hypothalamus. In addition, the inhibition of hypothalamic leukemia inhibitory factor was accompanied by glucose intolerance and insulin resistance. CONCLUSION: Hypothalamic expression of leukemia inhibitory factor may protect mice from the development of diet-induced obesity; the inhibition of this protein in the hypothalamus transforms obesity-resistant into obesity-prone mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipotálamo/metabolismo , Fator Inibidor de Leucemia/antagonistas & inibidores , Fator Inibidor de Leucemia/biossíntese , Obesidade/metabolismo , Fenótipo , Animais , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Hipotálamo/efeitos dos fármacos , Imunoglobulina G/farmacologia , Masculino , Camundongos , Obesidade/etiologia , Distribuição Aleatória
3.
Aging (Albany NY) ; 9(1): 142-155, 2016 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-28039439

RESUMO

Recently, we demonstrated that the hypothalamic S1PR1/STAT3 axis plays a critical role in the control of food consumption and energy expenditure in rodents. Here, we found that reduction of hypothalamic S1PR1 expression occurs in an age-dependent manner, and was associated with defective thermogenic signaling and weight gain. To address the physiological relevance of these findings, we investigated the effects of chronic and acute exercise on the hypothalamic S1PR1/STAT3 axis. Chronic exercise increased S1PR1 expression and STAT3 phosphorylation in the hypothalamus, restoring the anorexigenic and thermogenic signals in middle-aged mice. Acutely, exercise increased sphingosine-1-phosphate (S1P) levels in the cerebrospinal fluid (CSF) of young rats, whereas the administration of CSF from exercised young rats into the hypothalamus of middle-aged rats at rest was sufficient to reduce the food intake. Finally, the intracerebroventricular (ICV) administration of S1PR1 activators, including the bioactive lipid molecule S1P, and pharmacological S1PR1 activator, SEW2871, induced a potent STAT3 phosphorylation and anorexigenic response in middle-aged rats. Overall, these results suggest that hypothalamic S1PR1 is important for the maintenance of energy balance and provide new insights into the mechanism by which exercise controls the anorexigenic and thermogenic signals in the central nervous system during the aging process.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Lisofosfolipídeos/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Absorciometria de Fóton , Tecido Adiposo Marrom/diagnóstico por imagem , Envelhecimento/fisiologia , Animais , Homeostase/fisiologia , Interleucina-6/sangue , Masculino , Camundongos , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Proteína Desacopladora 1/metabolismo
4.
Lasers Med Sci ; 30(7): 2003-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24880927

RESUMO

The liver regeneration is an important clinical issue after major hepatectomies. Unfortunately, many organs (including the liver) exhibit age-related impairments regarding their regenerative capacity. Recent studies found that low-power laser irradiation (LPLI) has a stimulatory effect on the liver regeneration process. However, its effects in elderly remain unknown. Thus, this study aimed to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized elderly rats exposed to LPLI. The effects of 15 min of LPLI (wavelength of 632.8 nm; fluence of 0.97 J/cm(2); total energy delivered of 3.6 J) were evaluated in hepatectomized elderly Wistar male rats. Afterwards, through immunoblotting approaches, the protein expression and phosphorylation levels of hepatocyte growth factor (HGF), Met, Akt and Erk 1/2 signaling pathways as well as the proliferating cell nuclear antigen (PCNA) were investigated. It was observed that LPLI was not able to improve liver regeneration in elderly rats as evidenced by the lack of improvement of HGF and PCNA protein expression or phosphorylation levels of Met, Akt and Erk 1/2 in the remnant livers. In sum, this study demonstrated that the main molecular pathway, i.e. HGF/Met → Akt and Erk 1/2 → PCNA, involved in the hepatic regeneration process was not improved by LPLI in elderly hepatectomized rats, which in turn rules out LPLI as an adjuvant therapy, as observed in this protocol of liver regeneration evaluation (i.e. at 48 h after 70 % resection), in elderly.


Assuntos
Envelhecimento , Regeneração Hepática/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Animais , Fator de Crescimento de Hepatócito/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Fígado/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Masculino , Antígeno Nuclear de Célula em Proliferação , Ratos , Ratos Wistar
5.
Diabetes ; 63(11): 3770-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24947351

RESUMO

Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.


Assuntos
Quimiocina CX3CL1/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Animais , Quimiocina CX3CL1/genética , Dieta Hiperlipídica/efeitos adversos , Citometria de Fluxo , Hipotálamo/imunologia , Immunoblotting , Inflamação/etiologia , Inflamação/imunologia , Masculino , Camundongos , Obesidade/etiologia , Obesidade/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
6.
Lasers Med Sci ; 28(6): 1511-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23334786

RESUMO

A simple, easy, and safe procedure aiming to improve liver regeneration could be of great clinical benefit in critical situations such as major hepatectomy, trauma, or hemorrhage. Low-power laser irradiation (LPLI) has come into a wide range of use in clinical practice by inducing regeneration in healthy and injured tissues. However, the effect of LPLI on the process of liver regeneration, especially those related to the molecular mechanisms, is not fully understood. Thus, the aim of the present study was to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized rats exposed to LPLI. We used Wistar male rats, which had their remaining liver irradiated or not with LPLI (wavelength of 632.8 nm and fluence of 65 mW/cm(2)) for 15 min after a 70% hepatectomy. We subsequently investigated hepatocyte growth factor (HGF), Met, Akt, and Erk 1/2 signaling pathways through protein expression and phosphorylation analyses along with cell proliferation (proliferating cell nuclear antigen (PCNA) and Ki-67) using immunoblotting and histological studies. Our results show that LPLI can improve liver regeneration as shown by increased HGF protein expression and the phosphorylation levels of Met, Akt, and Erk 1/2 accompanied by higher levels of the PCNA and Ki-67 protein in the remnant livers. In summary, our results suggest that LPLI may play a clinical role as a simple, fast, and easy-to-perform strategy in order to enhance the liver regenerative capacity of a small liver remnant after hepatectomy.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Regeneração Hepática/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Animais , Hepatectomia , Antígeno Ki-67/metabolismo , Regeneração Hepática/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA