Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nutrients ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959926

RESUMO

Recently, obesity-induced insulin resistance, type 2 diabetes, and cardiovascular disease have become major social problems. We have previously shown that Astaxanthin (AX), which is a natural antioxidant, significantly ameliorates obesity-induced glucose intolerance and insulin resistance. It is well known that AX is a strong lipophilic antioxidant and has been shown to be beneficial for acute inflammation. However, the actual effects of AX on chronic inflammation in adipose tissue (AT) remain unclear. To observe the effects of AX on AT functions in obese mice, we fed six-week-old male C57BL/6J on high-fat-diet (HFD) supplemented with or without 0.02% of AX for 24 weeks. We determined the effect of AX at 10 and 24 weeks of HFD with or without AX on various parameters including insulin sensitivity, glucose tolerance, inflammation, and mitochondrial function in AT. We found that AX significantly reduced oxidative stress and macrophage infiltration into AT, as well as maintaining healthy AT function. Furthermore, AX prevented pathological AT remodeling probably caused by hypoxia in AT. Collectively, AX treatment exerted anti-inflammatory effects via its antioxidant activity in AT, maintained the vascular structure of AT and preserved the stem cells and progenitor's niche, and enhanced anti-inflammatory hypoxia induction factor-2α-dominant hypoxic response. Through these mechanisms of action, it prevented the pathological remodeling of AT and maintained its integrity.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Anti-Inflamatórios , Antioxidantes , Suplementos Nutricionais , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Glucose/metabolismo , Inflamação , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Xantofilas/administração & dosagem , Xantofilas/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32831883

RESUMO

Due to the increasing incidence of metabolic syndrome, the development of new therapeutic strategies is urgently required. One promising approach is to focus on the predisease state (so-called Mibyou in traditional Japanese medicine) before metabolic syndrome as a preemptive medical target. We recently succeeded in detecting a predisease state before metabolic syndrome using a mathematical theory called the dynamical network biomarker (DNB) theory. The detected predisease state was characterized by 147 DNB genes among a total of 24,217 genes in TSOD (Tsumura-Suzuki Obese Diabetes) mice, a well-accepted model of metabolic syndrome, at 5 weeks of age. The timing of the predisease state was much earlier than the onset of metabolic syndrome in TSOD mice reported to be at approximately 8-12 weeks of age. In the present study, we investigated whether the predisease state in TSOD mice can be inhibited by the oral administration of a Kampo formula, bofutsushosan (BTS), which is usually used to treat obese patients with metabolic syndrome in Japan, from 3 to 7 weeks of age. We found the comprehensive suppression of the early warning signals of the DNB genes by BTS at 5 weeks of age and later. Specifically, the standard deviations of 134 genes among the 147 DNB genes decreased at 5 weeks of age as compared to the nontreatment control group, and 80 of them showed more than 50% reduction. In addition, at 7 weeks of age, the body weight and blood glucose level were significantly lower in the BTS-treated group than in the nontreatment control group. The results of our study suggest a novel mechanism of BTS; it suppressed fluctuations of the DNB genes at the predisease state before metabolic syndrome and thus prevented the subsequent transition to metabolic syndrome. In conclusion, this study demonstrated the preventive and preemptive effects of a Kampo formula on Mibyou before metabolic syndrome for the first time based on scientific evaluation.

4.
Sci Rep ; 10(1): 5544, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218475

RESUMO

Obesity and insulin resistance are associated with dysbiosis of the gut microbiota and impaired intestinal barrier function. Herein, we report that Bofutsushosan (BFT), a Japanese herbal medicine, Kampo, which has been clinically used for constipation in Asian countries, ameliorates glucose metabolism in mice with diet-induced obesity. A 16S rRNA sequence analysis of fecal samples showed that BFT dramatically increased the relative abundance of Verrucomicrobia, which was mainly associated with a bloom of Akkermansia muciniphila (AKK). BFT decreased the gut permeability as assessed by FITC-dextran gavage assay, associated with increased expression of tight-junction related protein, claudin-1, in the colon. The BFT treatment group also showed significant decreases of the plasma endotoxin level and expression of the hepatic lipopolysaccharide-binding protein. Antibiotic treatment abrogated the metabolic effects of BFT. Moreover, many of these changes could be reproduced when the cecal contents of BFT-treated donors were transferred to antibiotic-pretreated high fat diet-fed mice. These data demonstrate that BFT modifies the gut microbiota with an increase in AKK, which may contribute to improving gut barrier function and preventing metabolic endotoxemia, leading to attenuation of diet-induced inflammation and glucose intolerance. Understanding the interaction between a medicine and the gut microbiota may provide insights into new pharmacological targets to improve glucose metabolism.


Assuntos
Glicemia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/administração & dosagem , Obesidade/tratamento farmacológico , Akkermansia/classificação , Akkermansia/efeitos dos fármacos , Akkermansia/genética , Akkermansia/isolamento & purificação , Animais , Medicamentos de Ervas Chinesas/farmacologia , Endotoxinas/sangue , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente , Permeabilidade , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Front Pharmacol ; 11: 307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218736

RESUMO

Growing evidence suggests that oxidative stress due to amyloid ß (Aß) accumulation is involved in Alzheimer's disease (AD) through the formation of amyloid plaque, which leads to hyperphosphorylation of tau, microglial activation, and cognitive deficits. The dysfunction or phenotypic loss of parvalbumin (PV)-positive neurons has been implicated in cognitive deficits. Astaxanthin is one of carotenoids and known as a highly potent antioxidant. We hypothesized that astaxanthin's antioxidant effects may prevent the onset of cognitive deficits in AD by preventing AD pathological processes associated with oxidative stress. In the present study, we investigated the effects of astaxanthin intake on the cognitive and pathological progression of AD in a mouse model of AD. The AppNL-G-F/NL-G-F mice were fed with or without astaxanthin from 5-to-6 weeks old, and cognitive functions were evaluated using a Barnes maze test at 6 months old. PV-positive neurons were investigated in the hippocampus. Aß42 deposits, accumulation of microglia, and phosphorylated tau (pTau) were immunohistochemically analyzed in the hippocampus. The hippocampal anti-oxidant status was also investigated. The Barnes maze test indicated that astaxanthin significantly ameliorated memory deficits. Astaxanthin reduced Aß42 deposition and pTau-positive areal fraction, while it increased PV-positive neuron density and microglial accumulation per unit fraction of Aß42 deposition in the hippocampus. Furthermore, astaxanthin increased total glutathione (GSH) levels, although 4-hydroxy-2,3-trans-nonenal (4-HNE) protein adduct levels (oxidative stress marker) remained high in the astaxanthin supplemented mice. The results indicated that astaxanthin ameliorated memory deficits and significantly reversed AD pathological processes (Aß42 deposition, pTau formation, GSH decrease, and PV-positive neuronal deficits). The elevated GSH levels and resultant recovery of PV-positive neuron density, as well as microglial activation, may prevent these pathological processes.

6.
J Cachexia Sarcopenia Muscle ; 11(1): 241-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32003547

RESUMO

BACKGROUND: Skeletal muscle is mainly responsible for insulin-stimulated glucose disposal. Dysfunction in skeletal muscle metabolism especially during obesity contributes to the insulin resistance. Astaxanthin (AX), a natural antioxidant, has been shown to ameliorate hepatic insulin resistance in obese mice. However, its effects in skeletal muscle are poorly understood. The current study aimed to investigate the molecular target of AX in ameliorating skeletal muscle insulin resistance. METHODS: We fed 6-week-old male C57BL/6J mice with normal chow (NC) or NC supplemented with AX (NC+AX) and high-fat-diet (HFD) or HFD supplemented with AX for 24 weeks. We determined the effect of AX on various parameters including insulin sensitivity, glucose uptake, inflammation, kinase signaling, gene expression, and mitochondrial function in muscle. We also determined energy metabolism in intact C2C12 cells treated with AX using the Seahorse XFe96 Extracellular Flux Analyzer and assessed the effect of AX on mitochondrial oxidative phosphorylation and mitochondrial biogenesis. RESULTS: AX-treated HFD mice showed improved metabolic status with significant reduction in blood glucose, serum total triglycerides, and cholesterol (p< 0.05). AX-treated HFD mice also showed improved glucose metabolism by enhancing glucose incorporation into peripheral target tissues, such as the skeletal muscle, rather than by suppressing gluconeogenesis in the liver as shown by hyperinsulinemic-euglycemic clamp study. AX activated AMPK in the skeletal muscle of the HFD mice and upregulated the expressions of transcriptional factors and coactivator, thereby inducing mitochondrial remodeling, including increased mitochondrial oxidative phosphorylation component and free fatty acid metabolism. We also assessed the effects of AX on mitochondrial biogenesis in the siRNA-mediated AMPK-depleted C2C12 cells and showed that the effect of AX was lost in the genetically AMPK-depleted C2C12 cells. Collectively, AX treatment (i) significantly ameliorated insulin resistance and glucose intolerance through regulation of AMPK activation in the muscle, (ii) stimulated mitochondrial biogenesis in the muscle, (iii) enhanced exercise tolerance and exercise-induced fatty acid metabolism, and (iv) exerted antiinflammatory effects via its antioxidant activity in adipose tissue. CONCLUSIONS: We concluded that AX treatment stimulated mitochondrial biogenesis and significantly ameliorated insulin resistance through activation of AMPK pathway in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibrinolíticos/uso terapêutico , Resistência à Insulina/fisiologia , Mitocôndrias Musculares/metabolismo , Animais , Fibrinolíticos/farmacologia , Humanos , Masculino , Camundongos , Biogênese de Organelas , Xantofilas/farmacologia , Xantofilas/uso terapêutico
7.
Cell Metab ; 21(5): 706-17, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25921090

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT), the key NAD(+) biosynthetic enzyme, has two different forms, intra- and extracellular (iNAMPT and eNAMPT), in mammals. However, the significance of eNAMPT secretion remains unclear. Here we demonstrate that deacetylation of iNAMPT by the mammalian NAD(+)-dependent deacetylase SIRT1 predisposes the protein to secretion in adipocytes. NAMPT mutants reveal that SIRT1 deacetylates lysine 53 (K53) and enhances eNAMPT activity and secretion. Adipose tissue-specific Nampt knockout and knockin (ANKO and ANKI) mice show reciprocal changes in circulating eNAMPT, affecting hypothalamic NAD(+)/SIRT1 signaling and physical activity accordingly. The defect in physical activity observed in ANKO mice is ameliorated by nicotinamide mononucleotide (NMN). Furthermore, administration of a NAMPT-neutralizing antibody decreases hypothalamic NAD(+) production, and treating ex vivo hypothalamic explants with purified eNAMPT enhances NAD(+), SIRT1 activity, and neural activation. Thus, our findings indicate a critical role of adipose tissue as a modulator for the regulation of NAD(+) biosynthesis at a systemic level.


Assuntos
Tecido Adiposo/metabolismo , Hipotálamo/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sirtuína 1/metabolismo , Acetilação , Tecido Adiposo/citologia , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Nicotinamida Fosforribosiltransferase/análise , Nicotinamida Fosforribosiltransferase/genética
9.
Cell Metab ; 6(1): 55-68, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17618856

RESUMO

Adiponectin has been shown to stimulate fatty acid oxidation and enhance insulin sensitivity through the activation of AMP-activated protein kinase (AMPK) in the peripheral tissues. The effects of adiponectin in the central nervous system, however, are still poorly understood. Here, we show that adiponectin enhances AMPK activity in the arcuate hypothalamus (ARH) via its receptor AdipoR1 to stimulate food intake; this stimulation of food intake by adiponectin was attenuated by dominant-negative AMPK expression in the ARH. Moreover, adiponectin also decreased energy expenditure. Adiponectin-deficient mice showed decreased AMPK phosphorylation in the ARH, decreased food intake, and increased energy expenditure, exhibiting resistance to high-fat-diet-induced obesity. Serum and cerebrospinal fluid levels of adiponectin and expression of AdipoR1 in the ARH were increased during fasting and decreased after refeeding. We conclude that adiponectin stimulates food intake and decreases energy expenditure during fasting through its effects in the central nervous system.


Assuntos
Adiponectina/fisiologia , Ingestão de Alimentos , Hipotálamo/enzimologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Adenoviridae/genética , Adiponectina/líquido cefalorraquidiano , Adiponectina/genética , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético , Feminino , Hipotálamo/patologia , Técnicas Imunoenzimáticas , Hibridização In Situ , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Sondas RNA , Receptores de Adiponectina , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores para Leptina
11.
Obes Res ; 12(5): 878-85, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15166310

RESUMO

OBJECTIVE: Disturbances in insulin signaling have been shown to induce obesity and/or hyperphagia in brain insulin receptor or insulin receptor substrate-2 (IRS-2) knockout (KO) mice. This study aimed to examine the central and peripheral mechanisms underlying the phenotype in IRS-2 KO mice. RESEARCH METHODS AND PROCEDURES: We measured the histological characterization of adipose tissues, mRNA levels of pro-opiomelanocortin, agouti-related protein, and neuropeptide Y in the hypothalamus and uncoupling proteins (UCPs) in peripheral tissues of IRS-2 KO mice. RESULTS: Female IRS-2 KO mice showed increased daily food intake. Body weight and adiposity were increased in both sexes, although these differences were more pronounced in female than in male IRS-2 KO mice. Both male and female IRS-2 KO mice showed decreased UCP1 mRNA expression in brown adipose tissue with defective thermoregulation, and UCP2 mRNA expression was increased in the white adipose tissue of female knockout mice. Furthermore, arcuate nucleus mRNA expression of pro-opiomelanocortin, was decreased in both male and female IRS-2 KO mice, whereas expression of agouti-related protein and neuropeptide Y were increased in female IRS-2 KO mice. DISCUSSION: In IRS-2 KO mice, disrupted control of hypothalamic neuropeptide levels and UCP mRNA expression may contribute to the development of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Regulação da Expressão Gênica , Neuropeptídeos/genética , Obesidade/metabolismo , Fosfoproteínas/deficiência , Tecido Adiposo/química , Tecido Adiposo/patologia , Proteína Relacionada com Agouti , Animais , Glicemia/análise , Composição Corporal , Ingestão de Alimentos , Ácidos Graxos não Esterificados/sangue , Feminino , Expressão Gênica , Hipotálamo/química , Insulina/sangue , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Canais Iônicos , Fígado/química , Masculino , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/genética , Músculo Esquelético/química , Neuropeptídeo Y/genética , Obesidade/patologia , Fosfoproteínas/fisiologia , Pró-Opiomelanocortina/genética , Proteínas/genética , RNA Mensageiro/análise , Caracteres Sexuais , Triglicerídeos/análise , Triglicerídeos/sangue , Proteína Desacopladora 2 , Aumento de Peso
12.
J Biol Chem ; 279(15): 14835-43, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14744864

RESUMO

SH2-containing inositol phosphatase 2 (SHIP2) is a physiologically important negative regulator of insulin signaling by hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI 3,4,5-trisphosphate in the target tissues of insulin. Targeted disruption of the SHIP2 gene in mice resulted in increased insulin sensitivity without affecting biological systems other than insulin signaling. Therefore, we investigated the molecular mechanisms by which SHIP2 specifically regulates insulin-induced metabolic signaling in 3T3-L1 adipocytes. Insulin-induced phosphorylation of Akt, one of the molecules downstream of PI3-kinase, was inhibited by expression of wild-type SHIP2, whereas it was increased by expression of 5'-phosphatase-defective (DeltaIP) SHIP2 in whole cell lysates. The regulatory effect of SHIP2 was mainly seen in the plasma membrane (PM) and low density microsomes but not in the cytosol. In this regard, following insulin stimulation, a proportion of Akt2, and not Akt1, appeared to redistribute from the cytosol to the PM. Thus, insulin-induced phosphorylation of Akt2 at the PM was predominantly regulated by SHIP2, whereas the phosphorylation of Akt1 was only minimally affected. Interestingly, insulin also elicited a subcellular redistribution of both wild-type and DeltaIP-SHIP2 from the cytosol to the PM. The degree of this redistribution was inhibited in part by pretreatment with PI3-kinase inhibitor. Although the expression of a constitutively active form of PI3-kinase myr-p110 also elicited a subcellular redistribution of SHIP2 to the PM, expression of SHIP2 appeared to affect the myr-p110-induced phosphorylation, and not the translocation, of Akt2. Furthermore, insulin-induced phosphorylation of Akt was effectively regulated by SHIP2 in embryonic fibroblasts derived from knockout mice lacking either insulin receptor substrate-1 or insulin receptor substrate-2. These results indicate that insulin specifically stimulates the redistribution of SHIP2 from the cytosol to the PM independent of 5'-phosphatase activity, thereby regulating the insulin-induced translocation and phosphorylation of Akt2 at the PM.


Assuntos
Membrana Celular/metabolismo , Insulina/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células 3T3-L1 , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Western Blotting , Cromonas/farmacologia , Citosol/metabolismo , DNA Complementar/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Microssomos/metabolismo , Modelos Genéticos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Testes de Precipitina , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt , Frações Subcelulares/metabolismo , Fatores de Tempo , Domínios de Homologia de src
13.
Nature ; 423(6941): 762-9, 2003 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-12802337

RESUMO

Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.


Assuntos
Diabetes Mellitus/metabolismo , Hipoglicemiantes/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Adiponectina , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Endotélio Vascular/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/química , Ligantes , Camundongos , Dados de Sequência Molecular , Células Musculares/metabolismo , Oxirredução , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Adiponectina , Receptores de Superfície Celular/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA